Abstract

A database of thermodynamic properties is developed, which extends a previous database of glycolysis and tricarboxylic acid cycle by adding the reactions of the pentose phosphate pathway. The raw data and documented estimations of solution properties are made electronically available. The database is determined by estimation of a set of parameters representing species-level free energies of formation. The resulting calculations provide thermodynamic and network-based estimates of thermodynamic properties for six reactions of the pentose phosphate pathway for which estimates are not available in the preexisting literature. Optimized results are made available in ThermoML format. Because calculations depend on estimated hydrogen and metal cation dissociation constants, an uncertainty and sensitivity analysis is performed, revealing 23 critical dissociation constants to which the computed thermodynamic properties are particularly sensitive.

Database URL:http://www.biocoda.org/thermo

Introduction

Reliable and self-consistent databases of thermodynamic properties for biochemical reactions are necessary for accurate analysis of biochemical systems (1–6). A recently developed database of thermodynamic properties for the reactions of glycolysis and the tricarboxylic acid cycle that was constituted from measured equilibrium data (7) represents a refinement to the Alberty database (8) in that it accounts for the ionic strength and interactions of biochemical reactants and metal cations (Mg2+, Ca2+, Na+ and K+) in estimating the derived properties from the raw data. The database of Li et al. (7) is a framework that can be extended and refined by adding the underlying raw experimental data in the database and/or refining the underlying model assumptions. Here an updated database is developed by adding the reactions of the pentose phosphate pathway into the original database.

As in Li et al. (7), thermodynamic properties (reference formula and formula) values are estimated by minimizing the difference between model predictions and experimental data. Apparent equilibrium constants for biochemical reactions are estimated by these derived thermodynamic properties and compared to experimental data measured under non-standard conditions. The basic formulae described in Li et al. (7) are used here, which account for temperature, ionic interactions and ion binding (8–13) effects to convert standard-state reference quantities to experimental state quantities.

Input data

Database of measured equilibrium constants

Raw experimental data are obtained from original reports (14–19). As in Li et al. (7), we preferentially select studies rated as A- and B-quality by Goldberg et al. (20–22). Free cation concentrations and ionic strength associated with these original studies are estimated based on the conditions reported in the original sources. All data and calculations are explicitly documented in the database. As we have previously established (7), each measurement entry in the raw-data database provides the following information: (i) enzyme name (EC number); (ii) experimental temperature, pH, ionic strength, apparent equilibrium constant, free metal cation concentrations, buffer and experimental method; (iii) quality rating from Goldberg et al. (20–22); (iv) notes on experiments and strategies of estimations and approximations applied in calculations; and (v) reference information. Up-to-date versions of the experimental database are made available at the URL http://www.biocoda.org/thermo, or by contacting the authors.

Database of reactions and estimated standard reaction enthalpies

There are eight reactions in the pentose phosphate pathway: glucose 6-phosphate dehydrogenase (EC 1.1.1.49, G6PD), 6-phosphogluconolactonase (EC 3.1.1.31, PGL), 6-phosphogluconate dehydrogenase (EC 1.1.1.44, PGD), ribose-5-phosphate isomerase (EC 5.3.1.6, R5PI), ribulose-phosphate 3-epimerase (EC 5.1.3.1, RUPE), transketolase (EC 2.2.1.1, TKL), transaldolase (EC 2.2.1.2, TAL) and transketolase 2 (EC 2.2.1.1, TKL2). The first three reactions are the oxidative pentose phosphate pathway, and the rest are the reductive pentose phosphate pathway (23). After adding these reactions into our original database, there are 33 reactions in total, which are shown in the Table 1 (first 33 reactions). Table 1 lists EC numbers, reaction names and the abbreviations employed, the reference reaction stoichiometries, and estimated standard reaction enthalpies at T = 298.15 K, I = 0 M. In the reference reaction, a superscript is used to indicate the charge of chemical species. For example, the abbreviation for references species for glucose (GLC0) is distinguished from the abbreviation for the biochemical reactant GLC.

Table 1.

Reactions with standard reaction enthalpies formula estimated for I = 0

EC No.Reaction nameReaction abbreviationReference reactionformula (kJ/mol)
EC 2.7.1.1GlucokinaseGLKGLC0 + ATP4− = G6P2− + ADP3− + H+−23.8a
EC 5.3.1.9Phosphoglucose isomerasePGIG6P2− = F6P2−11.53b
EC 2.7.1.11PhosphofructokinasePFKF6P2− + ATP4− = F16P4− + ADP3− + H+−9.5c
EC 4.1.2.13Fructose-1,6-biphosphatate aldolaseFBAF16P4− = DHAP2− + GAP2−48.97b
EC 5.3.1.1Triosphosphate isomeraseTPIGAP2− = DHAP2−2.73d
EC 4.1.2.13Fructose-1,6-biphosphatate aldolase 2FBA2F16P4− = 2DHAP2−51.70b
EC 1.2.1.12Glyceraldyde-3-P dehydrogenaseGAPGAP2− + HPO42− + NADox− = BPG4− + NADred2− + H+#e
EC 2.7.2.3Phosphoglycerate kinasePGKGAP2− + HPO42− + NADox− + ADP3− = PG33− + NADred2− + ATP4− + H+#e
EC 5.4.2.1Phosphoglycerate mutasePGYMPG23− = PG33−28.05b
EC 4.2.1.11EnolaseENOPG23− = PEP3− + H2O015.1b
EC 2.7.1.40Pyruvate kinasePYKPYR− + ATP4− = PEP3− + ADP3− + H+5.415a
EC 4.1.3.7Citrate synthaseCITSOAA2− + ACoA0 + H2O0 = CIT3− + COAS− + 2H+#e
EC 4.2.1.3Aconitrate hydrateseACONISCIT3− = CIT3−−20.0b
EC 1.1.1.42Isocitrate dehydrogenaseIDHISCIT3− + NADPox3− + H2O0 = AKG2− + NADPred4− + CO32− + 2H+−22.17b
EC 6.2.1.4Auccinate-CoA ligaseSCSGTP4- + SUC2− + COAS− + H+ = GDP3− + HPO42− + SUCCoA−30.9b
EC 4.2.1.2Fumarate hydrataseFUMFUM2− + H2O0 = MAL2−−13.18b
EC 1.1.1.37Malate dehydrogenaseMDHMAL2− + NADox− = OAA2− + NADred2− + H+51.29b
EC 2.7.4.6Nucleoside-diphosphate kinaseNDKATP4− + GDP3− = ADP3− + GTP4−#e
EC 1.6.1.1NADP transhydrogenaseNPTHNADox− + NADPred4− = NADred2− + NADPox3−−4.1c
EC 1.1.1.40Malic enzymeMLEMAL2− + NADPox3− + H2O0 = PYR− + NADPred4− + CO32- + 2H+#e
EC 1.1.1.37Malate dehydrogenase 2MDH2MAL2− + ACoA0 + NADox− + H2O0 = CIT3− + COAS− + NADred2− + 3H+#e
EC 2.7.1.23NAD+ kinaseNADKATP4− + NADox− = ADP3− + NADPox3− + H+#e
EC 3.6.1.32ATPaseATPSATP4− + H2O0 = ADP3− + HPO42− + H+−20.5a
EC 3.1.3.1Alkaline phosphatase/G6P hydrolysisG6PHG6P2− + H2O0 = GLC0 + Pi2−0.91a
EC 6.4.1.1Pyruvate carboxylasePCLPYR− + ATP4− + CO32− = OAA2− + ADP3− + Pi2−#e
EC 1.1.1.49Glucose 6-phosphate dehydrogenaseG6PDG6P2− + NADPox3− = PGLT2− + NADPred4− + H+#e
EC 3.1.1.316-PhosphogluconolactonasePGLG6P2− + NADPox3− + H2O0 = PGN3− + NADPred4− + 2H+#e
EC 1.1.1.446-Phosphogluconate dehydrogenasePGDPGN3− + NADPox3− + H2O0 = RU5P2− + NADPred4− + CO32− + 2H+37.47b
EC 5.3.1.6Ribose-5-phosphate isomeraseR5PIR5P2− = RU5P2−12.86b
EC 5.1.3.1Ribulose-phosphate 3-epimeraseRUPERU5P2− = X5P2−#e
EC 2.2.1.1TransketolaseTKLS7P2− + GAP2− = R5P2− + X5P2−#e
EC 2.2.1.2TransaldolaseTALS7P2− + GAP2− = E4P2− + F6P2−#e
EC 2.2.1.1Transketolase 2TKL2F6P2− + GAP2− = E4P2− + X5P2−#e
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4Pyruvate dehydrogenase complexPDHPYR− + COAS− + NADox− + H2O = CO32− + ACoA0 + NADred2− + H+#e
EC 1.1.1.41Isocitrate dehydrogenaseIDH2ISCIT3− + NADox− + H2O0 = AKG2- + NADred2− + CO32− + 2H+−26.27d
EC 1.2.1.52α-Ketoglutarate dehydrogenaseAKGDHAKG2− + NADox + COAS− + H2O0 = SUCCoA− + NADred2− + CO32- + H+#e
EC 1.3.5.1Succinate dehydrogenaseSDHSUC2− + CoQ0 = FUM2− + CoQH20#e
EC No.Reaction nameReaction abbreviationReference reactionformula (kJ/mol)
EC 2.7.1.1GlucokinaseGLKGLC0 + ATP4− = G6P2− + ADP3− + H+−23.8a
EC 5.3.1.9Phosphoglucose isomerasePGIG6P2− = F6P2−11.53b
EC 2.7.1.11PhosphofructokinasePFKF6P2− + ATP4− = F16P4− + ADP3− + H+−9.5c
EC 4.1.2.13Fructose-1,6-biphosphatate aldolaseFBAF16P4− = DHAP2− + GAP2−48.97b
EC 5.3.1.1Triosphosphate isomeraseTPIGAP2− = DHAP2−2.73d
EC 4.1.2.13Fructose-1,6-biphosphatate aldolase 2FBA2F16P4− = 2DHAP2−51.70b
EC 1.2.1.12Glyceraldyde-3-P dehydrogenaseGAPGAP2− + HPO42− + NADox− = BPG4− + NADred2− + H+#e
EC 2.7.2.3Phosphoglycerate kinasePGKGAP2− + HPO42− + NADox− + ADP3− = PG33− + NADred2− + ATP4− + H+#e
EC 5.4.2.1Phosphoglycerate mutasePGYMPG23− = PG33−28.05b
EC 4.2.1.11EnolaseENOPG23− = PEP3− + H2O015.1b
EC 2.7.1.40Pyruvate kinasePYKPYR− + ATP4− = PEP3− + ADP3− + H+5.415a
EC 4.1.3.7Citrate synthaseCITSOAA2− + ACoA0 + H2O0 = CIT3− + COAS− + 2H+#e
EC 4.2.1.3Aconitrate hydrateseACONISCIT3− = CIT3−−20.0b
EC 1.1.1.42Isocitrate dehydrogenaseIDHISCIT3− + NADPox3− + H2O0 = AKG2− + NADPred4− + CO32− + 2H+−22.17b
EC 6.2.1.4Auccinate-CoA ligaseSCSGTP4- + SUC2− + COAS− + H+ = GDP3− + HPO42− + SUCCoA−30.9b
EC 4.2.1.2Fumarate hydrataseFUMFUM2− + H2O0 = MAL2−−13.18b
EC 1.1.1.37Malate dehydrogenaseMDHMAL2− + NADox− = OAA2− + NADred2− + H+51.29b
EC 2.7.4.6Nucleoside-diphosphate kinaseNDKATP4− + GDP3− = ADP3− + GTP4−#e
EC 1.6.1.1NADP transhydrogenaseNPTHNADox− + NADPred4− = NADred2− + NADPox3−−4.1c
EC 1.1.1.40Malic enzymeMLEMAL2− + NADPox3− + H2O0 = PYR− + NADPred4− + CO32- + 2H+#e
EC 1.1.1.37Malate dehydrogenase 2MDH2MAL2− + ACoA0 + NADox− + H2O0 = CIT3− + COAS− + NADred2− + 3H+#e
EC 2.7.1.23NAD+ kinaseNADKATP4− + NADox− = ADP3− + NADPox3− + H+#e
EC 3.6.1.32ATPaseATPSATP4− + H2O0 = ADP3− + HPO42− + H+−20.5a
EC 3.1.3.1Alkaline phosphatase/G6P hydrolysisG6PHG6P2− + H2O0 = GLC0 + Pi2−0.91a
EC 6.4.1.1Pyruvate carboxylasePCLPYR− + ATP4− + CO32− = OAA2− + ADP3− + Pi2−#e
EC 1.1.1.49Glucose 6-phosphate dehydrogenaseG6PDG6P2− + NADPox3− = PGLT2− + NADPred4− + H+#e
EC 3.1.1.316-PhosphogluconolactonasePGLG6P2− + NADPox3− + H2O0 = PGN3− + NADPred4− + 2H+#e
EC 1.1.1.446-Phosphogluconate dehydrogenasePGDPGN3− + NADPox3− + H2O0 = RU5P2− + NADPred4− + CO32− + 2H+37.47b
EC 5.3.1.6Ribose-5-phosphate isomeraseR5PIR5P2− = RU5P2−12.86b
EC 5.1.3.1Ribulose-phosphate 3-epimeraseRUPERU5P2− = X5P2−#e
EC 2.2.1.1TransketolaseTKLS7P2− + GAP2− = R5P2− + X5P2−#e
EC 2.2.1.2TransaldolaseTALS7P2− + GAP2− = E4P2− + F6P2−#e
EC 2.2.1.1Transketolase 2TKL2F6P2− + GAP2− = E4P2− + X5P2−#e
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4Pyruvate dehydrogenase complexPDHPYR− + COAS− + NADox− + H2O = CO32− + ACoA0 + NADred2− + H+#e
EC 1.1.1.41Isocitrate dehydrogenaseIDH2ISCIT3− + NADox− + H2O0 = AKG2- + NADred2− + CO32− + 2H+−26.27d
EC 1.2.1.52α-Ketoglutarate dehydrogenaseAKGDHAKG2− + NADox + COAS− + H2O0 = SUCCoA− + NADred2− + CO32- + H+#e
EC 1.3.5.1Succinate dehydrogenaseSDHSUC2− + CoQ0 = FUM2− + CoQH20#e

aGoldberg et al. (21, 33).

bCalculated value based on experimental data at different temperatures.

cValues obtained from Goldberg et al. (20, 21) where associated ionic strength is not reported.

dValue calculated from sum of dependent reactions.

eValue not available.

Table 1.

Reactions with standard reaction enthalpies formula estimated for I = 0

EC No.Reaction nameReaction abbreviationReference reactionformula (kJ/mol)
EC 2.7.1.1GlucokinaseGLKGLC0 + ATP4− = G6P2− + ADP3− + H+−23.8a
EC 5.3.1.9Phosphoglucose isomerasePGIG6P2− = F6P2−11.53b
EC 2.7.1.11PhosphofructokinasePFKF6P2− + ATP4− = F16P4− + ADP3− + H+−9.5c
EC 4.1.2.13Fructose-1,6-biphosphatate aldolaseFBAF16P4− = DHAP2− + GAP2−48.97b
EC 5.3.1.1Triosphosphate isomeraseTPIGAP2− = DHAP2−2.73d
EC 4.1.2.13Fructose-1,6-biphosphatate aldolase 2FBA2F16P4− = 2DHAP2−51.70b
EC 1.2.1.12Glyceraldyde-3-P dehydrogenaseGAPGAP2− + HPO42− + NADox− = BPG4− + NADred2− + H+#e
EC 2.7.2.3Phosphoglycerate kinasePGKGAP2− + HPO42− + NADox− + ADP3− = PG33− + NADred2− + ATP4− + H+#e
EC 5.4.2.1Phosphoglycerate mutasePGYMPG23− = PG33−28.05b
EC 4.2.1.11EnolaseENOPG23− = PEP3− + H2O015.1b
EC 2.7.1.40Pyruvate kinasePYKPYR− + ATP4− = PEP3− + ADP3− + H+5.415a
EC 4.1.3.7Citrate synthaseCITSOAA2− + ACoA0 + H2O0 = CIT3− + COAS− + 2H+#e
EC 4.2.1.3Aconitrate hydrateseACONISCIT3− = CIT3−−20.0b
EC 1.1.1.42Isocitrate dehydrogenaseIDHISCIT3− + NADPox3− + H2O0 = AKG2− + NADPred4− + CO32− + 2H+−22.17b
EC 6.2.1.4Auccinate-CoA ligaseSCSGTP4- + SUC2− + COAS− + H+ = GDP3− + HPO42− + SUCCoA−30.9b
EC 4.2.1.2Fumarate hydrataseFUMFUM2− + H2O0 = MAL2−−13.18b
EC 1.1.1.37Malate dehydrogenaseMDHMAL2− + NADox− = OAA2− + NADred2− + H+51.29b
EC 2.7.4.6Nucleoside-diphosphate kinaseNDKATP4− + GDP3− = ADP3− + GTP4−#e
EC 1.6.1.1NADP transhydrogenaseNPTHNADox− + NADPred4− = NADred2− + NADPox3−−4.1c
EC 1.1.1.40Malic enzymeMLEMAL2− + NADPox3− + H2O0 = PYR− + NADPred4− + CO32- + 2H+#e
EC 1.1.1.37Malate dehydrogenase 2MDH2MAL2− + ACoA0 + NADox− + H2O0 = CIT3− + COAS− + NADred2− + 3H+#e
EC 2.7.1.23NAD+ kinaseNADKATP4− + NADox− = ADP3− + NADPox3− + H+#e
EC 3.6.1.32ATPaseATPSATP4− + H2O0 = ADP3− + HPO42− + H+−20.5a
EC 3.1.3.1Alkaline phosphatase/G6P hydrolysisG6PHG6P2− + H2O0 = GLC0 + Pi2−0.91a
EC 6.4.1.1Pyruvate carboxylasePCLPYR− + ATP4− + CO32− = OAA2− + ADP3− + Pi2−#e
EC 1.1.1.49Glucose 6-phosphate dehydrogenaseG6PDG6P2− + NADPox3− = PGLT2− + NADPred4− + H+#e
EC 3.1.1.316-PhosphogluconolactonasePGLG6P2− + NADPox3− + H2O0 = PGN3− + NADPred4− + 2H+#e
EC 1.1.1.446-Phosphogluconate dehydrogenasePGDPGN3− + NADPox3− + H2O0 = RU5P2− + NADPred4− + CO32− + 2H+37.47b
EC 5.3.1.6Ribose-5-phosphate isomeraseR5PIR5P2− = RU5P2−12.86b
EC 5.1.3.1Ribulose-phosphate 3-epimeraseRUPERU5P2− = X5P2−#e
EC 2.2.1.1TransketolaseTKLS7P2− + GAP2− = R5P2− + X5P2−#e
EC 2.2.1.2TransaldolaseTALS7P2− + GAP2− = E4P2− + F6P2−#e
EC 2.2.1.1Transketolase 2TKL2F6P2− + GAP2− = E4P2− + X5P2−#e
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4Pyruvate dehydrogenase complexPDHPYR− + COAS− + NADox− + H2O = CO32− + ACoA0 + NADred2− + H+#e
EC 1.1.1.41Isocitrate dehydrogenaseIDH2ISCIT3− + NADox− + H2O0 = AKG2- + NADred2− + CO32− + 2H+−26.27d
EC 1.2.1.52α-Ketoglutarate dehydrogenaseAKGDHAKG2− + NADox + COAS− + H2O0 = SUCCoA− + NADred2− + CO32- + H+#e
EC 1.3.5.1Succinate dehydrogenaseSDHSUC2− + CoQ0 = FUM2− + CoQH20#e
EC No.Reaction nameReaction abbreviationReference reactionformula (kJ/mol)
EC 2.7.1.1GlucokinaseGLKGLC0 + ATP4− = G6P2− + ADP3− + H+−23.8a
EC 5.3.1.9Phosphoglucose isomerasePGIG6P2− = F6P2−11.53b
EC 2.7.1.11PhosphofructokinasePFKF6P2− + ATP4− = F16P4− + ADP3− + H+−9.5c
EC 4.1.2.13Fructose-1,6-biphosphatate aldolaseFBAF16P4− = DHAP2− + GAP2−48.97b
EC 5.3.1.1Triosphosphate isomeraseTPIGAP2− = DHAP2−2.73d
EC 4.1.2.13Fructose-1,6-biphosphatate aldolase 2FBA2F16P4− = 2DHAP2−51.70b
EC 1.2.1.12Glyceraldyde-3-P dehydrogenaseGAPGAP2− + HPO42− + NADox− = BPG4− + NADred2− + H+#e
EC 2.7.2.3Phosphoglycerate kinasePGKGAP2− + HPO42− + NADox− + ADP3− = PG33− + NADred2− + ATP4− + H+#e
EC 5.4.2.1Phosphoglycerate mutasePGYMPG23− = PG33−28.05b
EC 4.2.1.11EnolaseENOPG23− = PEP3− + H2O015.1b
EC 2.7.1.40Pyruvate kinasePYKPYR− + ATP4− = PEP3− + ADP3− + H+5.415a
EC 4.1.3.7Citrate synthaseCITSOAA2− + ACoA0 + H2O0 = CIT3− + COAS− + 2H+#e
EC 4.2.1.3Aconitrate hydrateseACONISCIT3− = CIT3−−20.0b
EC 1.1.1.42Isocitrate dehydrogenaseIDHISCIT3− + NADPox3− + H2O0 = AKG2− + NADPred4− + CO32− + 2H+−22.17b
EC 6.2.1.4Auccinate-CoA ligaseSCSGTP4- + SUC2− + COAS− + H+ = GDP3− + HPO42− + SUCCoA−30.9b
EC 4.2.1.2Fumarate hydrataseFUMFUM2− + H2O0 = MAL2−−13.18b
EC 1.1.1.37Malate dehydrogenaseMDHMAL2− + NADox− = OAA2− + NADred2− + H+51.29b
EC 2.7.4.6Nucleoside-diphosphate kinaseNDKATP4− + GDP3− = ADP3− + GTP4−#e
EC 1.6.1.1NADP transhydrogenaseNPTHNADox− + NADPred4− = NADred2− + NADPox3−−4.1c
EC 1.1.1.40Malic enzymeMLEMAL2− + NADPox3− + H2O0 = PYR− + NADPred4− + CO32- + 2H+#e
EC 1.1.1.37Malate dehydrogenase 2MDH2MAL2− + ACoA0 + NADox− + H2O0 = CIT3− + COAS− + NADred2− + 3H+#e
EC 2.7.1.23NAD+ kinaseNADKATP4− + NADox− = ADP3− + NADPox3− + H+#e
EC 3.6.1.32ATPaseATPSATP4− + H2O0 = ADP3− + HPO42− + H+−20.5a
EC 3.1.3.1Alkaline phosphatase/G6P hydrolysisG6PHG6P2− + H2O0 = GLC0 + Pi2−0.91a
EC 6.4.1.1Pyruvate carboxylasePCLPYR− + ATP4− + CO32− = OAA2− + ADP3− + Pi2−#e
EC 1.1.1.49Glucose 6-phosphate dehydrogenaseG6PDG6P2− + NADPox3− = PGLT2− + NADPred4− + H+#e
EC 3.1.1.316-PhosphogluconolactonasePGLG6P2− + NADPox3− + H2O0 = PGN3− + NADPred4− + 2H+#e
EC 1.1.1.446-Phosphogluconate dehydrogenasePGDPGN3− + NADPox3− + H2O0 = RU5P2− + NADPred4− + CO32− + 2H+37.47b
EC 5.3.1.6Ribose-5-phosphate isomeraseR5PIR5P2− = RU5P2−12.86b
EC 5.1.3.1Ribulose-phosphate 3-epimeraseRUPERU5P2− = X5P2−#e
EC 2.2.1.1TransketolaseTKLS7P2− + GAP2− = R5P2− + X5P2−#e
EC 2.2.1.2TransaldolaseTALS7P2− + GAP2− = E4P2− + F6P2−#e
EC 2.2.1.1Transketolase 2TKL2F6P2− + GAP2− = E4P2− + X5P2−#e
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4Pyruvate dehydrogenase complexPDHPYR− + COAS− + NADox− + H2O = CO32− + ACoA0 + NADred2− + H+#e
EC 1.1.1.41Isocitrate dehydrogenaseIDH2ISCIT3− + NADox− + H2O0 = AKG2- + NADred2− + CO32− + 2H+−26.27d
EC 1.2.1.52α-Ketoglutarate dehydrogenaseAKGDHAKG2− + NADox + COAS− + H2O0 = SUCCoA− + NADred2− + CO32- + H+#e
EC 1.3.5.1Succinate dehydrogenaseSDHSUC2− + CoQ0 = FUM2− + CoQH20#e

aGoldberg et al. (21, 33).

bCalculated value based on experimental data at different temperatures.

cValues obtained from Goldberg et al. (20, 21) where associated ionic strength is not reported.

dValue calculated from sum of dependent reactions.

eValue not available.

Reaction enthalpies (formula) for two reactions in the pentose phosphate pathway (PGD and R5PI) can be estimated using van't Hoff equation because data on apparent equilibrium constants at different temperatures are available. Neither equilibrium data at different temperatures nor prior values of formula are available for the other six reactions of the pentose phosphate pathway; hence the symbol ‘#’ is used to denote the absence of data. For these cases, the value is set to zero in further calculations.

Database of reactant and dissociation constants

There are seven reactants introduced to the reactant database by adding the pentose phosphate pathway into the thermodynamic database: erythrose 4-phosphate (E4P), 6-phosphoglucono-δ-lactone (PGLT), 6-phospho-d-gluconate (PGN), ribose 5-phosphate (R5P), ribulose 5-phosphate (RU5P), sedoheptulose 7-phosphate (S7P) and xylulose 5-phosphate (X5P). For the five sugar phosphates (E4P, R5P, RU5P, S7P and X5P), cation dissociation constants for only R5P can be found in NIST database. Since E4P, RU5P, S7P and X5P are structurally similar substances to R5P (all have similar near neighbors to the phosphate group), a pragmatic approach to estimate the necessary dissociation constants is to use the values for R5P (24). Specifically, E4P, RU5P, S7P and X5P are assumed to have dissociation properties equal to those for R5P in our calculations. For PGLT, we use the pKH1 value of 5.99 from Alberty (10). For PGN, Casazza et al. (15) report that the hydrogen ion dissociation constant for the carboxylic acid is >1.0E-4, while the constant for the phosphate ester is the same as that of glucose 6-P [pKH1 = 5.99 (10)]. Here we arbitrarily assign the value of 4.995 to the pKH1 for PGN, which is the average of 4 and 5.99. The uncertainties of these assignments are considered in the uncertainty and sensitivity analysis below.

Basic thermodynamic and ion binding data for biochemical reactants and associated reference species are listed in Table 2. Each entry in the table contains the following information: (i) detailed name of reactant; (ii) reference species abbreviation; (iii) reactant abbreviation; (iv) number of protons in reference species; and (v) the dissociation constants (provided as pK) and the corresponding dissociation enthalpies formula Dissociation constants and enthalpies are tabulated at 298.15 K and 0.1 M ionic strength. The symbol ‘#’ is used to indicate absence of data. For these cases, the pK's are assumed to be infinite (no binding) with corresponding dissociation constants equal to zero. In the calculations, all the pK and formula values are adjusted to a common reference state of T = 298.15 K and I = 0.

Table 2.

Reactant databasea

ReactantReference species abbreviationbReactant abbreviationNHbpKH1formulapKH2formulapKMg1formulapKHMgformulapKMg2formulapKK1formulapKNa1formulapKHNaformulapKCa1formulapKHCaformula
Acetyl-coenzyme AACoA0ACoA3####################
Adenosine diphosphateADP3−ADP126.496−23.87163.3−151.59−7.51.27−11.761#1.12###2.86−9.61.48−6.2
Adenosine triphosphateATP4−ATP126.71−23.99154.28−182.32−9.61.7−17.521.17−11.310.8##3.95−132.16−7.9
1,3-BisphosphoglycerateBPG4−BPG47.1c###################
CitrateCIT3−CIT55.67−1.94.353.13.517−81.8###0.6−3.540.75−1##3.54−1.22.07#
Coenzyme A-SHCOASCOAS08.17c###################
Carbon dioxide (total)CO32−CO2_tot09.9c16.1c6.15c8.27c################
Dihydroxyacetone phosphateDHAP2−DHAP55.9###1.57###########1.38###
d-fructose 6-phosphateF6P2−F6P115.89−0.559d1.1#1.74e−9.72d##############
d-fructose 1,6-phosphateF16P4−F16P106.64#5.92#2.7#2.12#############
FumarateFUM2−FUM24.09−1.562.861.08############0.6−6.44##
d-glucose 6-phosphateG6P2−G6P115.89e−0.559d##1.74b−9.72d##############
d-glyceraldehyde 3-phosphateGAP2−GAP55.27c###################
Guanosine diphosphateGDP3−GDP126.505−2.142.8#3.4−7.1##############
d-glucoseGLC0GLC12####################
Guanosine triphosphateGTP4−GTP126.63−32.937.14.31−172.31#########3.7###
WaterH2O0H2O2####################
IsocitrateISCIT3−ISCIT55.765#4.29#2.625#1.43#########2.54###
α-KetoglutarateAKG2−AKG4####################
MalateMAL2−MAL44.715−0.583.2653.41.71−6.160.9f###0.18−2.860.280.4##2.005−1.061.068
NADoxNADoxNADox26####################
NADredNADred2−NADred27####################
NADPoxNADPox3−NADPox256.255k#3.874k#################
NADPredNADPred4−NADPred266.255l#3.874l#################
OxaloacetateOAA2−OAA23.95.242.2616.621.02###########1.6###
OrthophosphateHPO42−Pi16.784.61.945−8.71.823−9.5180.669###0.5#0.61#0.0856#1.745−9.5180.921−10.759
2-Phospho-d-glyceratePG23−PG247#3.55#2.45#####1.18#########
3-Phospho-d-glyceratePG33−PG346.89c#3.64g#2.21h#####0.87 h#########
PhosphoenolpyruvatePEP3−PEP26.245#3.45#2.26#####1.08#########
PyruvatePYRPYR32.2612.8##1.1###########0.8###
SuccinateSUC2−SUC45.2750.414.0231.355#0.62###0.43−2.760.4212−2.759##1.405−8.9390.65−8
Succinyl-CoASUCCoASUCCoA43.99c###################
Erythrose 4-phosphateE4P2−E4P96.255i−9.75i2i#1.58i−9.71i##########1.48i###
6-Phosphoglucono-δ-lactonePGLT2−PGLT115.99c###################
6-PhosphogluconatePGN3−PGN134.995j###################
Ribose 5-phosphateR5P2−R5P116.255−9.752#1.58−9.71d##########1.48###
Ribulose 5-phosphateRU5P2−RU5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
Sedoheptulose 7-phosphateS7P2−S7P156.255i−9.75i2i#1.58i−9.71i##########1.48i###
Xylulose 5-phosphateX5P2−X5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
ReactantReference species abbreviationbReactant abbreviationNHbpKH1formulapKH2formulapKMg1formulapKHMgformulapKMg2formulapKK1formulapKNa1formulapKHNaformulapKCa1formulapKHCaformula
Acetyl-coenzyme AACoA0ACoA3####################
Adenosine diphosphateADP3−ADP126.496−23.87163.3−151.59−7.51.27−11.761#1.12###2.86−9.61.48−6.2
Adenosine triphosphateATP4−ATP126.71−23.99154.28−182.32−9.61.7−17.521.17−11.310.8##3.95−132.16−7.9
1,3-BisphosphoglycerateBPG4−BPG47.1c###################
CitrateCIT3−CIT55.67−1.94.353.13.517−81.8###0.6−3.540.75−1##3.54−1.22.07#
Coenzyme A-SHCOASCOAS08.17c###################
Carbon dioxide (total)CO32−CO2_tot09.9c16.1c6.15c8.27c################
Dihydroxyacetone phosphateDHAP2−DHAP55.9###1.57###########1.38###
d-fructose 6-phosphateF6P2−F6P115.89−0.559d1.1#1.74e−9.72d##############
d-fructose 1,6-phosphateF16P4−F16P106.64#5.92#2.7#2.12#############
FumarateFUM2−FUM24.09−1.562.861.08############0.6−6.44##
d-glucose 6-phosphateG6P2−G6P115.89e−0.559d##1.74b−9.72d##############
d-glyceraldehyde 3-phosphateGAP2−GAP55.27c###################
Guanosine diphosphateGDP3−GDP126.505−2.142.8#3.4−7.1##############
d-glucoseGLC0GLC12####################
Guanosine triphosphateGTP4−GTP126.63−32.937.14.31−172.31#########3.7###
WaterH2O0H2O2####################
IsocitrateISCIT3−ISCIT55.765#4.29#2.625#1.43#########2.54###
α-KetoglutarateAKG2−AKG4####################
MalateMAL2−MAL44.715−0.583.2653.41.71−6.160.9f###0.18−2.860.280.4##2.005−1.061.068
NADoxNADoxNADox26####################
NADredNADred2−NADred27####################
NADPoxNADPox3−NADPox256.255k#3.874k#################
NADPredNADPred4−NADPred266.255l#3.874l#################
OxaloacetateOAA2−OAA23.95.242.2616.621.02###########1.6###
OrthophosphateHPO42−Pi16.784.61.945−8.71.823−9.5180.669###0.5#0.61#0.0856#1.745−9.5180.921−10.759
2-Phospho-d-glyceratePG23−PG247#3.55#2.45#####1.18#########
3-Phospho-d-glyceratePG33−PG346.89c#3.64g#2.21h#####0.87 h#########
PhosphoenolpyruvatePEP3−PEP26.245#3.45#2.26#####1.08#########
PyruvatePYRPYR32.2612.8##1.1###########0.8###
SuccinateSUC2−SUC45.2750.414.0231.355#0.62###0.43−2.760.4212−2.759##1.405−8.9390.65−8
Succinyl-CoASUCCoASUCCoA43.99c###################
Erythrose 4-phosphateE4P2−E4P96.255i−9.75i2i#1.58i−9.71i##########1.48i###
6-Phosphoglucono-δ-lactonePGLT2−PGLT115.99c###################
6-PhosphogluconatePGN3−PGN134.995j###################
Ribose 5-phosphateR5P2−R5P116.255−9.752#1.58−9.71d##########1.48###
Ribulose 5-phosphateRU5P2−RU5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
Sedoheptulose 7-phosphateS7P2−S7P156.255i−9.75i2i#1.58i−9.71i##########1.48i###
Xylulose 5-phosphateX5P2−X5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###

aDissociation pK and formula are reported for T = 298.15 K and I = 0.1 M. Unless indicated, values are the average number obtained from NIST database (27). Dissociation enthalpies are reported in units of kJ/mol. Subscripts on ‘pK’ and ‘formula’ entries are defined as follows: ‘H’: hydrogen, ‘Mg’: magnesium, ‘K’: potassium, ‘Na’: sodium, ‘Ca’: calcium, ‘1’: first ion dissociation, ‘2’: second ion dissociation, ‘HMg’: hydrogen ion binds to the ligand before magnesium ion binds to the ligand. ‘#’ denotes value is not available.

bAlberty (8).

cAlberty (10, 34).

dTewari et al. (35).

eG6P and F6P are assumed to have equivalent H+ and Mg2+-dissociation properties.

fFrom NIST database (36) at T = 293.15 K.

gLarsson-Raźnikiewicz (37).

hMerrill et al. (38).

iE4P, RU5P, S7P and X5P are assumed to have equivalent dissociation properties as R5P (24).

jCasazza et al. (15).

kBriggs et al. (39).

lNADPred is assumed to have equivalent dissociation properties as NADPox.

Table 2.

Reactant databasea

ReactantReference species abbreviationbReactant abbreviationNHbpKH1formulapKH2formulapKMg1formulapKHMgformulapKMg2formulapKK1formulapKNa1formulapKHNaformulapKCa1formulapKHCaformula
Acetyl-coenzyme AACoA0ACoA3####################
Adenosine diphosphateADP3−ADP126.496−23.87163.3−151.59−7.51.27−11.761#1.12###2.86−9.61.48−6.2
Adenosine triphosphateATP4−ATP126.71−23.99154.28−182.32−9.61.7−17.521.17−11.310.8##3.95−132.16−7.9
1,3-BisphosphoglycerateBPG4−BPG47.1c###################
CitrateCIT3−CIT55.67−1.94.353.13.517−81.8###0.6−3.540.75−1##3.54−1.22.07#
Coenzyme A-SHCOASCOAS08.17c###################
Carbon dioxide (total)CO32−CO2_tot09.9c16.1c6.15c8.27c################
Dihydroxyacetone phosphateDHAP2−DHAP55.9###1.57###########1.38###
d-fructose 6-phosphateF6P2−F6P115.89−0.559d1.1#1.74e−9.72d##############
d-fructose 1,6-phosphateF16P4−F16P106.64#5.92#2.7#2.12#############
FumarateFUM2−FUM24.09−1.562.861.08############0.6−6.44##
d-glucose 6-phosphateG6P2−G6P115.89e−0.559d##1.74b−9.72d##############
d-glyceraldehyde 3-phosphateGAP2−GAP55.27c###################
Guanosine diphosphateGDP3−GDP126.505−2.142.8#3.4−7.1##############
d-glucoseGLC0GLC12####################
Guanosine triphosphateGTP4−GTP126.63−32.937.14.31−172.31#########3.7###
WaterH2O0H2O2####################
IsocitrateISCIT3−ISCIT55.765#4.29#2.625#1.43#########2.54###
α-KetoglutarateAKG2−AKG4####################
MalateMAL2−MAL44.715−0.583.2653.41.71−6.160.9f###0.18−2.860.280.4##2.005−1.061.068
NADoxNADoxNADox26####################
NADredNADred2−NADred27####################
NADPoxNADPox3−NADPox256.255k#3.874k#################
NADPredNADPred4−NADPred266.255l#3.874l#################
OxaloacetateOAA2−OAA23.95.242.2616.621.02###########1.6###
OrthophosphateHPO42−Pi16.784.61.945−8.71.823−9.5180.669###0.5#0.61#0.0856#1.745−9.5180.921−10.759
2-Phospho-d-glyceratePG23−PG247#3.55#2.45#####1.18#########
3-Phospho-d-glyceratePG33−PG346.89c#3.64g#2.21h#####0.87 h#########
PhosphoenolpyruvatePEP3−PEP26.245#3.45#2.26#####1.08#########
PyruvatePYRPYR32.2612.8##1.1###########0.8###
SuccinateSUC2−SUC45.2750.414.0231.355#0.62###0.43−2.760.4212−2.759##1.405−8.9390.65−8
Succinyl-CoASUCCoASUCCoA43.99c###################
Erythrose 4-phosphateE4P2−E4P96.255i−9.75i2i#1.58i−9.71i##########1.48i###
6-Phosphoglucono-δ-lactonePGLT2−PGLT115.99c###################
6-PhosphogluconatePGN3−PGN134.995j###################
Ribose 5-phosphateR5P2−R5P116.255−9.752#1.58−9.71d##########1.48###
Ribulose 5-phosphateRU5P2−RU5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
Sedoheptulose 7-phosphateS7P2−S7P156.255i−9.75i2i#1.58i−9.71i##########1.48i###
Xylulose 5-phosphateX5P2−X5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
ReactantReference species abbreviationbReactant abbreviationNHbpKH1formulapKH2formulapKMg1formulapKHMgformulapKMg2formulapKK1formulapKNa1formulapKHNaformulapKCa1formulapKHCaformula
Acetyl-coenzyme AACoA0ACoA3####################
Adenosine diphosphateADP3−ADP126.496−23.87163.3−151.59−7.51.27−11.761#1.12###2.86−9.61.48−6.2
Adenosine triphosphateATP4−ATP126.71−23.99154.28−182.32−9.61.7−17.521.17−11.310.8##3.95−132.16−7.9
1,3-BisphosphoglycerateBPG4−BPG47.1c###################
CitrateCIT3−CIT55.67−1.94.353.13.517−81.8###0.6−3.540.75−1##3.54−1.22.07#
Coenzyme A-SHCOASCOAS08.17c###################
Carbon dioxide (total)CO32−CO2_tot09.9c16.1c6.15c8.27c################
Dihydroxyacetone phosphateDHAP2−DHAP55.9###1.57###########1.38###
d-fructose 6-phosphateF6P2−F6P115.89−0.559d1.1#1.74e−9.72d##############
d-fructose 1,6-phosphateF16P4−F16P106.64#5.92#2.7#2.12#############
FumarateFUM2−FUM24.09−1.562.861.08############0.6−6.44##
d-glucose 6-phosphateG6P2−G6P115.89e−0.559d##1.74b−9.72d##############
d-glyceraldehyde 3-phosphateGAP2−GAP55.27c###################
Guanosine diphosphateGDP3−GDP126.505−2.142.8#3.4−7.1##############
d-glucoseGLC0GLC12####################
Guanosine triphosphateGTP4−GTP126.63−32.937.14.31−172.31#########3.7###
WaterH2O0H2O2####################
IsocitrateISCIT3−ISCIT55.765#4.29#2.625#1.43#########2.54###
α-KetoglutarateAKG2−AKG4####################
MalateMAL2−MAL44.715−0.583.2653.41.71−6.160.9f###0.18−2.860.280.4##2.005−1.061.068
NADoxNADoxNADox26####################
NADredNADred2−NADred27####################
NADPoxNADPox3−NADPox256.255k#3.874k#################
NADPredNADPred4−NADPred266.255l#3.874l#################
OxaloacetateOAA2−OAA23.95.242.2616.621.02###########1.6###
OrthophosphateHPO42−Pi16.784.61.945−8.71.823−9.5180.669###0.5#0.61#0.0856#1.745−9.5180.921−10.759
2-Phospho-d-glyceratePG23−PG247#3.55#2.45#####1.18#########
3-Phospho-d-glyceratePG33−PG346.89c#3.64g#2.21h#####0.87 h#########
PhosphoenolpyruvatePEP3−PEP26.245#3.45#2.26#####1.08#########
PyruvatePYRPYR32.2612.8##1.1###########0.8###
SuccinateSUC2−SUC45.2750.414.0231.355#0.62###0.43−2.760.4212−2.759##1.405−8.9390.65−8
Succinyl-CoASUCCoASUCCoA43.99c###################
Erythrose 4-phosphateE4P2−E4P96.255i−9.75i2i#1.58i−9.71i##########1.48i###
6-Phosphoglucono-δ-lactonePGLT2−PGLT115.99c###################
6-PhosphogluconatePGN3−PGN134.995j###################
Ribose 5-phosphateR5P2−R5P116.255−9.752#1.58−9.71d##########1.48###
Ribulose 5-phosphateRU5P2−RU5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###
Sedoheptulose 7-phosphateS7P2−S7P156.255i−9.75i2i#1.58i−9.71i##########1.48i###
Xylulose 5-phosphateX5P2−X5P116.255i−9.75i2i#1.58i−9.71i##########1.48i###

aDissociation pK and formula are reported for T = 298.15 K and I = 0.1 M. Unless indicated, values are the average number obtained from NIST database (27). Dissociation enthalpies are reported in units of kJ/mol. Subscripts on ‘pK’ and ‘formula’ entries are defined as follows: ‘H’: hydrogen, ‘Mg’: magnesium, ‘K’: potassium, ‘Na’: sodium, ‘Ca’: calcium, ‘1’: first ion dissociation, ‘2’: second ion dissociation, ‘HMg’: hydrogen ion binds to the ligand before magnesium ion binds to the ligand. ‘#’ denotes value is not available.

bAlberty (8).

cAlberty (10, 34).

dTewari et al. (35).

eG6P and F6P are assumed to have equivalent H+ and Mg2+-dissociation properties.

fFrom NIST database (36) at T = 293.15 K.

gLarsson-Raźnikiewicz (37).

hMerrill et al. (38).

iE4P, RU5P, S7P and X5P are assumed to have equivalent dissociation properties as R5P (24).

jCasazza et al. (15).

kBriggs et al. (39).

lNADPred is assumed to have equivalent dissociation properties as NADPox.

Estimation of standard-state thermodynamic quantities

Given the compiled raw experimental data on the reactions and reactants, the thermodynamic model is used to estimate reference formula and formula values for the reference reactions and species. Note that in our thermodynamic model the formula values are adjustable parameters estimated to obtain the best fit to the biochemical equilibrium data. As in previous studies (8), values of formula for oxidized species of certain redox pairs are arbitrarily set to zero. Thus, these values are not true free energies of the reactions of formation for these chemical species; instead, they are parameters for which the thermodynamic model makes optimal predictions for these interdependent biochemical reactions.

Because the calculated formula are interrelated [e.g. in the reductive pentose phosphate pathway, five carbon sugars (X5P and R5P) are converted into three carbon (GAP) and six carbon (F6P) sugars which can then be utilized by the pathway of glycolysis], the database of formula may be rigorously extended only by recalculating the entire database using all of the raw data. Therefore, model fitting is based on total 686 data entries for the network of all 33 reactions (the first 33 reactions listed in Table 1). Standard free energies of formation for all the reference species are unable to be estimated independently because there are 29 stoichiometrically independent reactions and in total 40 reactants in our system. There are four reactions PDH, IDH2, AKGDH and SDH (last four reactions in Tables 1 and 4) in the TCA cycle for which direct measurements are not available in the literature. For these reactions, formula values are calculated using Alberty's database (8) and set as constraints to perform the optimization of the thermodynamic model. IDH2 is not an independent reaction in the overall network of 33 reactions. Therefore, values of formula for 32 references species may be estimated from data on the 29 reactions with the three constraints. The values of formula for eight species are set to fixed values which are obtained from Alberty (8), as shown in Table 3 (values of formula for CoQ0 and CoQH20 do not come into these calculations). A constrained nonlinear optimization procedure with the fmincon solver (Mathworks, Inc.) is used to analyze the whole data set. By weighting in inverse proportion to the number of data points available for a given reaction and minimizing the difference between model predictions and experimental data, a simultaneous solution of standard reaction Gibbs energies is obtained for the entire data set.

Table 3.

Values of formula (T = 298.15 K, I = 0) used in this study and that were taken from Alberty (8) (Table 3.2)

Speciesformula (kJ/mol)
ACoA0−188.52
ADP3−−1906.13
CO32−−527.81
GTP4−−2768.1
H2O−237.19
NADox0a
HPO42−−1096.1
H+0
CoQ00a
CoQH20−89.92
Speciesformula (kJ/mol)
ACoA0−188.52
ADP3−−1906.13
CO32−−527.81
GTP4−−2768.1
H2O−237.19
NADox0a
HPO42−−1096.1
H+0
CoQ00a
CoQH20−89.92

aProperty value is based on the arbitrary assignment of zero.

Table 3.

Values of formula (T = 298.15 K, I = 0) used in this study and that were taken from Alberty (8) (Table 3.2)

Speciesformula (kJ/mol)
ACoA0−188.52
ADP3−−1906.13
CO32−−527.81
GTP4−−2768.1
H2O−237.19
NADox0a
HPO42−−1096.1
H+0
CoQ00a
CoQH20−89.92
Speciesformula (kJ/mol)
ACoA0−188.52
ADP3−−1906.13
CO32−−527.81
GTP4−−2768.1
H2O−237.19
NADox0a
HPO42−−1096.1
H+0
CoQ00a
CoQH20−89.92

aProperty value is based on the arbitrary assignment of zero.

Table 4.

Optimal reaction free energies for reference chemical reactions (formula) and for biochemical reactions (formula) under physiological conditionsa

EC No.ReactionformulabformulabformulaformulaNon-standard element contributionsc
TIpHP
EC 2.7.1.1GLK16.1916.03−19.22−35.411.611.57−41.562.97
EC 5.3.1.9PGI3.123.132.78−0.34−0.34000
EC 2.7.1.11PFK26.7926.79−15.62−42.411.46−4.70−41.562.40
EC 4.1.2.13FBA18.7918.8024.645.85−1.216.2600.81
EC 5.3.1.1TPI−7.01−7.01−7.57−0.56−0.3900−0.17
EC 4.1.2.13FBA211.7911.7917.075.28−1.616.2600.64
EC 1.2.1.12GAP51.3751.372.60−48.772.07−9.39−41.560.12
EC 2.7.2.3PGK34.3734.37−19.00−53.371.38−9.39−41.56−3.79
EC 5.4.2.1PGYM−5.89−5.90−6.35−0.46−1.37000.91
EC 4.2.1.11ENO−4.54−4.53−4.470.07−0.79000.86
EC 2.7.1.40PYK66.9166.9027.18−39.732.48−1.57−41.560.92
EC 4.1.3.7CITS60.1660.32−36.60−96.762.42−6.26−83.13−9.80
EC 4.2.1.3ACON−5.75−5.76−7.58−1.830.5700−2.41
EC 1.1.1.42IDH97.0597.06−3.29−100.344.80−6.26−83.13−15.76
EC 6.2.1.4SCS−56.55−56.560.0756.62−1.036.2641.569.82
EC 4.2.1.2FUM−3.38−3.38−3.52−0.140.3900−0.53
EC 1.1.1.37MDH71.4171.0928.04−43.370.81−3.13−41.560.52
EC 2.7.4.6NDK0.020.01−0.56−0.58000−0.58
EC 1.6.1.1NPTH−3.53−3.58−0.413.120.023.130−0.03
EC 1.1.1.40MLE104.53103.452.00−102.534.21−7.83−83.13−15.78
EC 1.1.1.37MDH2131.57131.41−6.50−138.075.30−9.39−124.69−9.28
EC 2.7.1.23NADK29.1126.90−9.95−39.061.17−1.57−41.562.89
EC 3.6.1.32ATPS4.994.67−32.42−37.411.031.57−41.561.56
EC 3.1.3.1G6PH−11.20−11.36−13.10-1.90−0.4900−1.41
EC 6.4.1.1PCL−24.60−24.12−4.5720.03−0.993.13017.89
EC 1.1.1.49G6PD38.69#d−7.51−46.201.56−6.26−41.560.07
EC 3.1.1.31PGL69.16#d−21.89−91.052.78−10.96−83.130.25
EC 1.1.1.44PGD104.64#d1.23−103.412.70−6.26−83.13−16.73
EC 5.3.1.6R5PI0.991.2e0.52−0.47−0.47000
EC 5.1.3.1RUPE−1.28−1.21e−1.33−0.05−0.05000
EC 2.2.1.1TKL1.58#d1.23−0.350.0600−0.41
EC 2.2.1.2TAL2.72#d2.63−0.090.1100−0.20
EC 2.2.1.1TKL28.98#d8.71−0.270.3600−0.63
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4PDH15.78f17.50−39.26−55.040.64−4.70−41.56−9.43
EC 1.1.1.41IDH293.5293.48−3.70−97.224.82−3.13−83.13−15.79
EC 1.2.1.52AKGDH15.85f15.28−37.66−53.510.64−3.13−41.56−9.45
EC 1.3.5.1SDH−1.35f−3.10−0.590.76−0.05000.81
EC No.ReactionformulabformulabformulaformulaNon-standard element contributionsc
TIpHP
EC 2.7.1.1GLK16.1916.03−19.22−35.411.611.57−41.562.97
EC 5.3.1.9PGI3.123.132.78−0.34−0.34000
EC 2.7.1.11PFK26.7926.79−15.62−42.411.46−4.70−41.562.40
EC 4.1.2.13FBA18.7918.8024.645.85−1.216.2600.81
EC 5.3.1.1TPI−7.01−7.01−7.57−0.56−0.3900−0.17
EC 4.1.2.13FBA211.7911.7917.075.28−1.616.2600.64
EC 1.2.1.12GAP51.3751.372.60−48.772.07−9.39−41.560.12
EC 2.7.2.3PGK34.3734.37−19.00−53.371.38−9.39−41.56−3.79
EC 5.4.2.1PGYM−5.89−5.90−6.35−0.46−1.37000.91
EC 4.2.1.11ENO−4.54−4.53−4.470.07−0.79000.86
EC 2.7.1.40PYK66.9166.9027.18−39.732.48−1.57−41.560.92
EC 4.1.3.7CITS60.1660.32−36.60−96.762.42−6.26−83.13−9.80
EC 4.2.1.3ACON−5.75−5.76−7.58−1.830.5700−2.41
EC 1.1.1.42IDH97.0597.06−3.29−100.344.80−6.26−83.13−15.76
EC 6.2.1.4SCS−56.55−56.560.0756.62−1.036.2641.569.82
EC 4.2.1.2FUM−3.38−3.38−3.52−0.140.3900−0.53
EC 1.1.1.37MDH71.4171.0928.04−43.370.81−3.13−41.560.52
EC 2.7.4.6NDK0.020.01−0.56−0.58000−0.58
EC 1.6.1.1NPTH−3.53−3.58−0.413.120.023.130−0.03
EC 1.1.1.40MLE104.53103.452.00−102.534.21−7.83−83.13−15.78
EC 1.1.1.37MDH2131.57131.41−6.50−138.075.30−9.39−124.69−9.28
EC 2.7.1.23NADK29.1126.90−9.95−39.061.17−1.57−41.562.89
EC 3.6.1.32ATPS4.994.67−32.42−37.411.031.57−41.561.56
EC 3.1.3.1G6PH−11.20−11.36−13.10-1.90−0.4900−1.41
EC 6.4.1.1PCL−24.60−24.12−4.5720.03−0.993.13017.89
EC 1.1.1.49G6PD38.69#d−7.51−46.201.56−6.26−41.560.07
EC 3.1.1.31PGL69.16#d−21.89−91.052.78−10.96−83.130.25
EC 1.1.1.44PGD104.64#d1.23−103.412.70−6.26−83.13−16.73
EC 5.3.1.6R5PI0.991.2e0.52−0.47−0.47000
EC 5.1.3.1RUPE−1.28−1.21e−1.33−0.05−0.05000
EC 2.2.1.1TKL1.58#d1.23−0.350.0600−0.41
EC 2.2.1.2TAL2.72#d2.63−0.090.1100−0.20
EC 2.2.1.1TKL28.98#d8.71−0.270.3600−0.63
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4PDH15.78f17.50−39.26−55.040.64−4.70−41.56−9.43
EC 1.1.1.41IDH293.5293.48−3.70−97.224.82−3.13−83.13−15.79
EC 1.2.1.52AKGDH15.85f15.28−37.66−53.510.64−3.13−41.56−9.45
EC 1.3.5.1SDH−1.35f−3.10−0.590.76−0.05000.81

aThe physiological conditions (26) are as follows: T = 310.15 K, I = 0.18 M, pH = 7, [Mg2+] = 0.8 mM, [K+] = 140 mM, [Na+] = 10 mM, [Ca2+] = 0.0001 mM. The unit of the free energy is kJ/mol.

bformula is the optimal reaction free energies for reference chemical reactions in this work, formula is the optimal reaction free energies for reference chemical reaction in Li et al. (7).

cThis column lists the actual values of each non-standard physiological condition contribution (in kJ/mol) to the difference between the physiological free energies (formula) and the standard free energies (formula). T denotes the temperature contribution, I denotes the ionic strength contribution, pH denotes the pH contribution and P denotes the binding polynomial contribution.

dValue is not available.

eCalculated from Goldberg's database (25): the formula values for R5P, RU5P and X5P in Goldberg's database are −1582.57, −1581.37 and −1582.58 kJ/mol, respectively.

fValues calculated from Alberty's database (8) are used as model constraints for which there are no equilibrium data in the raw-data database. Since the formula values for CoQ and CoQH2 are not predicted here, these values are set to 0 and −89.92 kJ/mol, respectively [from Alberty (8)] to computed formula for the SDH reaction.

Table 4.

Optimal reaction free energies for reference chemical reactions (formula) and for biochemical reactions (formula) under physiological conditionsa

EC No.ReactionformulabformulabformulaformulaNon-standard element contributionsc
TIpHP
EC 2.7.1.1GLK16.1916.03−19.22−35.411.611.57−41.562.97
EC 5.3.1.9PGI3.123.132.78−0.34−0.34000
EC 2.7.1.11PFK26.7926.79−15.62−42.411.46−4.70−41.562.40
EC 4.1.2.13FBA18.7918.8024.645.85−1.216.2600.81
EC 5.3.1.1TPI−7.01−7.01−7.57−0.56−0.3900−0.17
EC 4.1.2.13FBA211.7911.7917.075.28−1.616.2600.64
EC 1.2.1.12GAP51.3751.372.60−48.772.07−9.39−41.560.12
EC 2.7.2.3PGK34.3734.37−19.00−53.371.38−9.39−41.56−3.79
EC 5.4.2.1PGYM−5.89−5.90−6.35−0.46−1.37000.91
EC 4.2.1.11ENO−4.54−4.53−4.470.07−0.79000.86
EC 2.7.1.40PYK66.9166.9027.18−39.732.48−1.57−41.560.92
EC 4.1.3.7CITS60.1660.32−36.60−96.762.42−6.26−83.13−9.80
EC 4.2.1.3ACON−5.75−5.76−7.58−1.830.5700−2.41
EC 1.1.1.42IDH97.0597.06−3.29−100.344.80−6.26−83.13−15.76
EC 6.2.1.4SCS−56.55−56.560.0756.62−1.036.2641.569.82
EC 4.2.1.2FUM−3.38−3.38−3.52−0.140.3900−0.53
EC 1.1.1.37MDH71.4171.0928.04−43.370.81−3.13−41.560.52
EC 2.7.4.6NDK0.020.01−0.56−0.58000−0.58
EC 1.6.1.1NPTH−3.53−3.58−0.413.120.023.130−0.03
EC 1.1.1.40MLE104.53103.452.00−102.534.21−7.83−83.13−15.78
EC 1.1.1.37MDH2131.57131.41−6.50−138.075.30−9.39−124.69−9.28
EC 2.7.1.23NADK29.1126.90−9.95−39.061.17−1.57−41.562.89
EC 3.6.1.32ATPS4.994.67−32.42−37.411.031.57−41.561.56
EC 3.1.3.1G6PH−11.20−11.36−13.10-1.90−0.4900−1.41
EC 6.4.1.1PCL−24.60−24.12−4.5720.03−0.993.13017.89
EC 1.1.1.49G6PD38.69#d−7.51−46.201.56−6.26−41.560.07
EC 3.1.1.31PGL69.16#d−21.89−91.052.78−10.96−83.130.25
EC 1.1.1.44PGD104.64#d1.23−103.412.70−6.26−83.13−16.73
EC 5.3.1.6R5PI0.991.2e0.52−0.47−0.47000
EC 5.1.3.1RUPE−1.28−1.21e−1.33−0.05−0.05000
EC 2.2.1.1TKL1.58#d1.23−0.350.0600−0.41
EC 2.2.1.2TAL2.72#d2.63−0.090.1100−0.20
EC 2.2.1.1TKL28.98#d8.71−0.270.3600−0.63
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4PDH15.78f17.50−39.26−55.040.64−4.70−41.56−9.43
EC 1.1.1.41IDH293.5293.48−3.70−97.224.82−3.13−83.13−15.79
EC 1.2.1.52AKGDH15.85f15.28−37.66−53.510.64−3.13−41.56−9.45
EC 1.3.5.1SDH−1.35f−3.10−0.590.76−0.05000.81
EC No.ReactionformulabformulabformulaformulaNon-standard element contributionsc
TIpHP
EC 2.7.1.1GLK16.1916.03−19.22−35.411.611.57−41.562.97
EC 5.3.1.9PGI3.123.132.78−0.34−0.34000
EC 2.7.1.11PFK26.7926.79−15.62−42.411.46−4.70−41.562.40
EC 4.1.2.13FBA18.7918.8024.645.85−1.216.2600.81
EC 5.3.1.1TPI−7.01−7.01−7.57−0.56−0.3900−0.17
EC 4.1.2.13FBA211.7911.7917.075.28−1.616.2600.64
EC 1.2.1.12GAP51.3751.372.60−48.772.07−9.39−41.560.12
EC 2.7.2.3PGK34.3734.37−19.00−53.371.38−9.39−41.56−3.79
EC 5.4.2.1PGYM−5.89−5.90−6.35−0.46−1.37000.91
EC 4.2.1.11ENO−4.54−4.53−4.470.07−0.79000.86
EC 2.7.1.40PYK66.9166.9027.18−39.732.48−1.57−41.560.92
EC 4.1.3.7CITS60.1660.32−36.60−96.762.42−6.26−83.13−9.80
EC 4.2.1.3ACON−5.75−5.76−7.58−1.830.5700−2.41
EC 1.1.1.42IDH97.0597.06−3.29−100.344.80−6.26−83.13−15.76
EC 6.2.1.4SCS−56.55−56.560.0756.62−1.036.2641.569.82
EC 4.2.1.2FUM−3.38−3.38−3.52−0.140.3900−0.53
EC 1.1.1.37MDH71.4171.0928.04−43.370.81−3.13−41.560.52
EC 2.7.4.6NDK0.020.01−0.56−0.58000−0.58
EC 1.6.1.1NPTH−3.53−3.58−0.413.120.023.130−0.03
EC 1.1.1.40MLE104.53103.452.00−102.534.21−7.83−83.13−15.78
EC 1.1.1.37MDH2131.57131.41−6.50−138.075.30−9.39−124.69−9.28
EC 2.7.1.23NADK29.1126.90−9.95−39.061.17−1.57−41.562.89
EC 3.6.1.32ATPS4.994.67−32.42−37.411.031.57−41.561.56
EC 3.1.3.1G6PH−11.20−11.36−13.10-1.90−0.4900−1.41
EC 6.4.1.1PCL−24.60−24.12−4.5720.03−0.993.13017.89
EC 1.1.1.49G6PD38.69#d−7.51−46.201.56−6.26−41.560.07
EC 3.1.1.31PGL69.16#d−21.89−91.052.78−10.96−83.130.25
EC 1.1.1.44PGD104.64#d1.23−103.412.70−6.26−83.13−16.73
EC 5.3.1.6R5PI0.991.2e0.52−0.47−0.47000
EC 5.1.3.1RUPE−1.28−1.21e−1.33−0.05−0.05000
EC 2.2.1.1TKL1.58#d1.23−0.350.0600−0.41
EC 2.2.1.2TAL2.72#d2.63−0.090.1100−0.20
EC 2.2.1.1TKL28.98#d8.71−0.270.3600−0.63
EC 1.2.4.1+EC 2.3.1.12+EC 1.8.1.4PDH15.78f17.50−39.26−55.040.64−4.70−41.56−9.43
EC 1.1.1.41IDH293.5293.48−3.70−97.224.82−3.13−83.13−15.79
EC 1.2.1.52AKGDH15.85f15.28−37.66−53.510.64−3.13−41.56−9.45
EC 1.3.5.1SDH−1.35f−3.10−0.590.76−0.05000.81

aThe physiological conditions (26) are as follows: T = 310.15 K, I = 0.18 M, pH = 7, [Mg2+] = 0.8 mM, [K+] = 140 mM, [Na+] = 10 mM, [Ca2+] = 0.0001 mM. The unit of the free energy is kJ/mol.

bformula is the optimal reaction free energies for reference chemical reactions in this work, formula is the optimal reaction free energies for reference chemical reaction in Li et al. (7).

cThis column lists the actual values of each non-standard physiological condition contribution (in kJ/mol) to the difference between the physiological free energies (formula) and the standard free energies (formula). T denotes the temperature contribution, I denotes the ionic strength contribution, pH denotes the pH contribution and P denotes the binding polynomial contribution.

dValue is not available.

eCalculated from Goldberg's database (25): the formula values for R5P, RU5P and X5P in Goldberg's database are −1582.57, −1581.37 and −1582.58 kJ/mol, respectively.

fValues calculated from Alberty's database (8) are used as model constraints for which there are no equilibrium data in the raw-data database. Since the formula values for CoQ and CoQH2 are not predicted here, these values are set to 0 and −89.92 kJ/mol, respectively [from Alberty (8)] to computed formula for the SDH reaction.

Results

Estimated Gibbs free energies of reaction and formation

Figure 1 illustrates model predictions versus experimental data for all data used in the analysis. The predicted formula values are obtained based on accounting for the biochemical state associated with a given experimental measurement in the raw-data database. Data points in the pentose phosphate pathway are shown as filled squares. Other data points are shown as open squares. The data span almost 14 orders of magnitude, and reveal good agreement between model predictions and measured data.

Model-predicted  versus experimental . Model predicted apparent equilibrium constants under defined experimental conditions (T, I, [Mg2+], [Ca2+], [Na+], [K+] and pH) are plotted versus experimental measurements for all data used in the analysis. Data points in the pentose phosphate pathway are shown as filled squares.
Figure 1.

Model-predicted formula versus experimental formula. Model predicted apparent equilibrium constants under defined experimental conditions (T, I, [Mg2+], [Ca2+], [Na+], [K+] and pH) are plotted versus experimental measurements for all data used in the analysis. Data points in the pentose phosphate pathway are shown as filled squares.

The optimal estimates of formula listed in Table 4 (formula), compared to the values from Li et al. (7) (formula). formula of first 25 reactions are almost the same as the results obtained previously (7). For the remaining eight reactions of the pentose phosphate pathway, since the formula of the reference species for E4P, PGLT, PGN and S7P are not available in the Alberty (8) or Goldberg's database (25), the symbol ‘#’ is used to denote the lack of a value. For reactions R5PI and RUPE, the absolute difference between our current model predictions and the values reported by Goldberg et al. (25) is within a reasonable margin, 0.21 and 0.07 kJ/mol, respectively. Predicted formula versus experimental measures are plotted in Figure 2 for these two reactions (R5PI and RUPE). The current database and the Goldberg database yield similar results. Recall that the dissociation properties of R5P, RU5P and X5P are assumed to be the same; the binding polynomials for the reactants on the left- and right-hand sides of these reactions are identical. Thus, the computed apparent equilibrium constants for these reactions do not depend on the experimental ionic composition. The validity of this assumption will be considered in the uncertainty and sensitivity analysis below. In addition, the predicted thermodynamic properties are not affected by the ionic strength for these reactions.

Model-predicted  versus experimental  for the ribose-5-phosphate isomerase and ribuloase-phosphate 3-epimerase reactions. Open circles (GT-based ) are computed based on the Goldberg's database (25); filled squares (optimized ) are computed based on the optimized values of  from Table 5.
Figure 2.

Model-predicted formula versus experimental formula for the ribose-5-phosphate isomerase and ribuloase-phosphate 3-epimerase reactions. Open circles (GT-based formula) are computed based on the Goldberg's database (25); filled squares (optimized formula) are computed based on the optimized values of formula from Table 5.

Optimal predicted formula associated with the formula predictions are listed in Table 5, compared to the optimal values of our previous version of the database (7). After the seven reactants of the pentose phosphate pathway and three constraints (formula of reaction PDH, AKGDH and SDH) are introduced, most of the estimated values of formula are shifted substantially. However, from Table 4 we can see that these shifts do not change the predicted formula compared to previous predictions. This is because the shifts in formula do not change the optimized results (apparent formula or formula) of our model. Recall that here the estimated formula values represent parameters in a thermodynamic model for this set of interdependent biochemical reactions. Since the number of independent reactions for which data exist (29 reactions) is smaller than the number of formula values to represent the system (40 reactants), values for several reference species are set to either existing values or values reported elsewhere (Table 3). As a result, these formula values are not physical constants. Rather, they are parameters in a thermodynamic network model that together form a self-consistent picture of the thermodynamics of reactions of the set of reactants studied here.

Table 5.

Optimal predicted formula for reference species (T = 298.15 K, I = 0 M)

No.SpeciesformulaaformulaaformulaSensitivity
1GLC0−719.37−916.39197.020.33
2ATP4−−2770.03−2769.710.3256099.52
3F6P2−−1563.96−1760.81196.851.52
4F16P4−−2401.08−2597.60196.523.55
5DHAP2−−1194.65−1292.9198.263.51
6GAP2−−1187.64−1285.9098.263.49
7BPG4−−2276.28−2354.5578.2719.44
8NADred2−43.9123.9120.000.14
9PG33−−1429.38−1507.9678.587.83
10PG23−−1423.49−1502.0678.577.83
11PEP3−−1190.84−1269.4078.565.54
12PYR−393.85−472.7278.870.64
13OAA2−−714.06−792.1378.072.06
14CIT3−−1022.44−1157.52135.081.38
15ISCIT3−−1016.69−1151.76135.071.38
16NADPox3−−834.79−836.681.891837.57
17AKG2−−676.45−791.57115.120.83
18SUC2−−589.56−685.5696.000.91
19GDP3−−1904.22−1904.530.319560.62
20FUM2−−500.99−598.7497.750.67
21MAL2−−741.56−839.3097.741.44
22G6P2−−1567.08−1763.94b196.861.52
23COAS0−57.170b57.170.03
24NADPred4−−787.35−809.19b21.8441.94
25SUCCoA−471.06−509.59b38.533.47
26E4P2−−1306.62##2.39
27PGLT2−−1575.83##1.85
28PGN3−−1782.55##2.34
29R5P2−−1435.72##1.86
30RU5P2−−1434.72##1.86
31S7P2−−1685.66##1.31
32X5P2−−1436.00##1.85
No.SpeciesformulaaformulaaformulaSensitivity
1GLC0−719.37−916.39197.020.33
2ATP4−−2770.03−2769.710.3256099.52
3F6P2−−1563.96−1760.81196.851.52
4F16P4−−2401.08−2597.60196.523.55
5DHAP2−−1194.65−1292.9198.263.51
6GAP2−−1187.64−1285.9098.263.49
7BPG4−−2276.28−2354.5578.2719.44
8NADred2−43.9123.9120.000.14
9PG33−−1429.38−1507.9678.587.83
10PG23−−1423.49−1502.0678.577.83
11PEP3−−1190.84−1269.4078.565.54
12PYR−393.85−472.7278.870.64
13OAA2−−714.06−792.1378.072.06
14CIT3−−1022.44−1157.52135.081.38
15ISCIT3−−1016.69−1151.76135.071.38
16NADPox3−−834.79−836.681.891837.57
17AKG2−−676.45−791.57115.120.83
18SUC2−−589.56−685.5696.000.91
19GDP3−−1904.22−1904.530.319560.62
20FUM2−−500.99−598.7497.750.67
21MAL2−−741.56−839.3097.741.44
22G6P2−−1567.08−1763.94b196.861.52
23COAS0−57.170b57.170.03
24NADPred4−−787.35−809.19b21.8441.94
25SUCCoA−471.06−509.59b38.533.47
26E4P2−−1306.62##2.39
27PGLT2−−1575.83##1.85
28PGN3−−1782.55##2.34
29R5P2−−1435.72##1.86
30RU5P2−−1434.72##1.86
31S7P2−−1685.66##1.31
32X5P2−−1436.00##1.85

aformula is the optimal free energies of formation in this work, formula is optimal free energies of formation in Li et al. (7). The unit of the free energy is kJ/mol.

bformula of species is set as fixed value which is obtained from Alberty's database as in Li et al. (7).

Table 5.

Optimal predicted formula for reference species (T = 298.15 K, I = 0 M)

No.SpeciesformulaaformulaaformulaSensitivity
1GLC0−719.37−916.39197.020.33
2ATP4−−2770.03−2769.710.3256099.52
3F6P2−−1563.96−1760.81196.851.52
4F16P4−−2401.08−2597.60196.523.55
5DHAP2−−1194.65−1292.9198.263.51
6GAP2−−1187.64−1285.9098.263.49
7BPG4−−2276.28−2354.5578.2719.44
8NADred2−43.9123.9120.000.14
9PG33−−1429.38−1507.9678.587.83
10PG23−−1423.49−1502.0678.577.83
11PEP3−−1190.84−1269.4078.565.54
12PYR−393.85−472.7278.870.64
13OAA2−−714.06−792.1378.072.06
14CIT3−−1022.44−1157.52135.081.38
15ISCIT3−−1016.69−1151.76135.071.38
16NADPox3−−834.79−836.681.891837.57
17AKG2−−676.45−791.57115.120.83
18SUC2−−589.56−685.5696.000.91
19GDP3−−1904.22−1904.530.319560.62
20FUM2−−500.99−598.7497.750.67
21MAL2−−741.56−839.3097.741.44
22G6P2−−1567.08−1763.94b196.861.52
23COAS0−57.170b57.170.03
24NADPred4−−787.35−809.19b21.8441.94
25SUCCoA−471.06−509.59b38.533.47
26E4P2−−1306.62##2.39
27PGLT2−−1575.83##1.85
28PGN3−−1782.55##2.34
29R5P2−−1435.72##1.86
30RU5P2−−1434.72##1.86
31S7P2−−1685.66##1.31
32X5P2−−1436.00##1.85
No.SpeciesformulaaformulaaformulaSensitivity
1GLC0−719.37−916.39197.020.33
2ATP4−−2770.03−2769.710.3256099.52
3F6P2−−1563.96−1760.81196.851.52
4F16P4−−2401.08−2597.60196.523.55
5DHAP2−−1194.65−1292.9198.263.51
6GAP2−−1187.64−1285.9098.263.49
7BPG4−−2276.28−2354.5578.2719.44
8NADred2−43.9123.9120.000.14
9PG33−−1429.38−1507.9678.587.83
10PG23−−1423.49−1502.0678.577.83
11PEP3−−1190.84−1269.4078.565.54
12PYR−393.85−472.7278.870.64
13OAA2−−714.06−792.1378.072.06
14CIT3−−1022.44−1157.52135.081.38
15ISCIT3−−1016.69−1151.76135.071.38
16NADPox3−−834.79−836.681.891837.57
17AKG2−−676.45−791.57115.120.83
18SUC2−−589.56−685.5696.000.91
19GDP3−−1904.22−1904.530.319560.62
20FUM2−−500.99−598.7497.750.67
21MAL2−−741.56−839.3097.741.44
22G6P2−−1567.08−1763.94b196.861.52
23COAS0−57.170b57.170.03
24NADPred4−−787.35−809.19b21.8441.94
25SUCCoA−471.06−509.59b38.533.47
26E4P2−−1306.62##2.39
27PGLT2−−1575.83##1.85
28PGN3−−1782.55##2.34
29R5P2−−1435.72##1.86
30RU5P2−−1434.72##1.86
31S7P2−−1685.66##1.31
32X5P2−−1436.00##1.85

aformula is the optimal free energies of formation in this work, formula is optimal free energies of formation in Li et al. (7). The unit of the free energy is kJ/mol.

bformula of species is set as fixed value which is obtained from Alberty's database as in Li et al. (7).

The robustness of these calculations is checked by repeating the optimization with the formula for a single species constrained to a value formula different from the estimated optimal value. The degree to which the experimental data can be matched with one formula value 10% different from the optimal values reported in Table 5 provides a measure of the sensitivity of the estimate. We define a sensitivity measure Si for the estimate of formula as
(1)
(2)
where formula is the optimal value of the error function (for values listed in Table 5) and formula is the error with formula set to a 90% or 110% of its optimal value, M is the number of reactions, and Nj is the number of experimental measures for each reaction. Sensitivity values are listed in Table 5 for each species, revealing that estimates of formula for GLC0, NADred2−, PYR, AKG2−, SUC2−, FUM2− and COAS0 are not highly sensitive to the data.

Predicted apparent Gibbs free energies under physiology conditions

The fifth column in Table 4 reports the predicted apparent formula (formula) at physiological conditions representative of a muscle cell (26) (T = 310.15 K, I = 0.18 M, pH = 7, [Mg2+] = 0.8 mM, [K+] = 140 mM, [Na+] = 10 mM, [Ca2+] = 0.0001 mM). Differences between the physiological free energies (formula) and the standard free energies (formula) are also shown in Table 4. These differences come from the effects of non-standard physiological conditions—temperature (T), ionic strength (I), pH and cation bindings. Therefore, the physiological free energy formula can be expressed by the summation of the standard free energy formula and the non-standard contributions formula:
(3)
where T0 = 298.15 K, I0 = 0 M, formula is the apparent equilibrium constant for the associated biochemical reaction, formula denotes the temperature contribution, formula denotes the ionic strength contribution, formula denotes the pH contribution and formula denotes the binding polynomial contribution. An example calculation [for reaction GLK (EC 2.7.1.1)] is described in the Appendix A.

The contributions of non-standard elements to the differences between the standard free energy for the reference chemical reaction (formula) and the physiological energy values (formula) are listed in the last four columns of Table 4. The results can be divided to three cases: (i) if the stoichiometric coefficient of H+ is non-zero in the reference chemical reaction (vH ≠ 0), the differences are substantial and pH contributes significantly, accounting for at least 73% of the difference, e.g. reactions GLK, PFK and GAP; (ii) if vH = 0 (formula) and formula (formula), the differences tend to be relatively small compared with case (i) and temperature and/or binding polynomials contribute most to the differences, e.g. reactions PGI, TPI and ACON; (iii) if vH = 0 (formula) and formula ionic strength and/or binding polynomials contribute most to the differences, e.g. reactions FBA, NPTH and PCL.

For the reactions of the pentose phosphate pathway, only the first three reactions G6PD, PGL and PGD show substantial difference between free energy for the reference chemical reaction (formula) and for biochemical reaction (formula) under physiological conditions. These three reactions have vH ≠ 0. They are the oxidative portion of the pentose phosphate pathway (15, 23), which produce NADPred and are essentially ‘irreversible’ in vivo (23).

Dissociation constants uncertainty and sensitivity analysis

The pK values listed in Table 2 are taken as the average value when there are several values (≥2) available in NIST database (27). For these pK values, the average value may not represent the best choice to be used in the model, i.e. some value among those available values may be more accurate than others. For some pK values, there exists only one estimate or no direct estimates. In order to predict the impact of uncertainty of these values on the model output, an uncertainty and sensitivity analysis is performed.

The following equation is used as a measure of uncertainty in a pK value when several independent measures are available:
(4)
where pKmax and pKmin refer to the maximum and minimum value of pK, respectively. Table 6 shows the computed uncertainties for these pKs.
Table 6.

Dissociation constants uncertainty analysis for reactants with several pK values available in NIST database (27)

Reactant abbreviationformulaformulaformulaformula
ADP0.05390.05450.01748
ATP0.08490.10510.1215
CIT0.04230.05970.0480
GDP0.0630
GTP0.07990.0835
ISCIT0.00520.0571
MAL0.01480.01530.0549
Pi0.02510.04630.19750.1433
PEP0.0336
SUC0.01330.01490.1476
R5P0.0016
Reactant abbreviationformulaformulaformulaformula
ADP0.05390.05450.01748
ATP0.08490.10510.1215
CIT0.04230.05970.0480
GDP0.0630
GTP0.07990.0835
ISCIT0.00520.0571
MAL0.01480.01530.0549
Pi0.02510.04630.19750.1433
PEP0.0336
SUC0.01330.01490.1476
R5P0.0016
Table 6.

Dissociation constants uncertainty analysis for reactants with several pK values available in NIST database (27)

Reactant abbreviationformulaformulaformulaformula
ADP0.05390.05450.01748
ATP0.08490.10510.1215
CIT0.04230.05970.0480
GDP0.0630
GTP0.07990.0835
ISCIT0.00520.0571
MAL0.01480.01530.0549
Pi0.02510.04630.19750.1433
PEP0.0336
SUC0.01330.01490.1476
R5P0.0016
Reactant abbreviationformulaformulaformulaformula
ADP0.05390.05450.01748
ATP0.08490.10510.1215
CIT0.04230.05970.0480
GDP0.0630
GTP0.07990.0835
ISCIT0.00520.0571
MAL0.01480.01530.0549
Pi0.02510.04630.19750.1433
PEP0.0336
SUC0.01330.01490.1476
R5P0.0016
When only one pK value estimate is available, the uncertainty is defined as the average number formula of all calculated formula:
(5)
According to Table 6, formula is equal to 0.0609.
The sensitivities of the computed thermodynamic database due to a 10% change of pK values are calculated (28):
(6)
where E is shown in equation (1), and xi is the value of the ithpK, Table 7 lists calculated sensitivities >0.1. Sensitivity values for all potassium and sodium ion dissociation constants are <0.1. Calcium ion dissociation constants are not included in these calculations because [Ca2+] = 0 for all reactions in our raw-data database. Thus calculated sensitivities of calcium ion dissociations are equal to 0.
Table 7.

Sensitivity >0.1 in dissociation constants sensitivity analysis

Reactant abbreviationformulaformulaformulaformula
ADP0.49360.36960.1709
ATP0.21510.26650.2210
CIT0.6029
COAS0.5344
DHAP0.65910.3772
F16P1.18390.31811.3545
G6P0.63720.4524
GDP0.1873
GTP0.1310
ISCIT0.12300.2245
NADPox1.7916
NADPred0.7611
Pi0.12480.2015
PG21.2172
PG30.3698
PEP0.2293
R5P0.1818
RU5P0.1007
S7P0.1433
X5P0.1597
Reactant abbreviationformulaformulaformulaformula
ADP0.49360.36960.1709
ATP0.21510.26650.2210
CIT0.6029
COAS0.5344
DHAP0.65910.3772
F16P1.18390.31811.3545
G6P0.63720.4524
GDP0.1873
GTP0.1310
ISCIT0.12300.2245
NADPox1.7916
NADPred0.7611
Pi0.12480.2015
PG21.2172
PG30.3698
PEP0.2293
R5P0.1818
RU5P0.1007
S7P0.1433
X5P0.1597
Table 7.

Sensitivity >0.1 in dissociation constants sensitivity analysis

Reactant abbreviationformulaformulaformulaformula
ADP0.49360.36960.1709
ATP0.21510.26650.2210
CIT0.6029
COAS0.5344
DHAP0.65910.3772
F16P1.18390.31811.3545
G6P0.63720.4524
GDP0.1873
GTP0.1310
ISCIT0.12300.2245
NADPox1.7916
NADPred0.7611
Pi0.12480.2015
PG21.2172
PG30.3698
PEP0.2293
R5P0.1818
RU5P0.1007
S7P0.1433
X5P0.1597
Reactant abbreviationformulaformulaformulaformula
ADP0.49360.36960.1709
ATP0.21510.26650.2210
CIT0.6029
COAS0.5344
DHAP0.65910.3772
F16P1.18390.31811.3545
G6P0.63720.4524
GDP0.1873
GTP0.1310
ISCIT0.12300.2245
NADPox1.7916
NADPred0.7611
Pi0.12480.2015
PG21.2172
PG30.3698
PEP0.2293
R5P0.1818
RU5P0.1007
S7P0.1433
X5P0.1597

The product (US) combining uncertainty U and sensitivity S can be used to check the overlapping effect of uncertainty and sensitivity. For example, recall that we arbitrarily assign the value of 4.995 to the pKH1 for PGN. Since the value is not available in NIST database, its uncertainty U is set to the average number 0.0609. If we consider the theoretical range of 4–5.99 discussed above, then the calculated uncertainty U is ∼0.4. For this case, because the computed pKH1 sensitivity is 0.0225, the US product is <0.01, which is small enough that the value of pKH1 for PGN has no substantial effect on the model output. Similarly, recall that E4P, RU5P, S7P and X5P are assumed to have dissociation properties equivalent to R5P in our calculations. Although the computed pK sensitivities of E4P, RU5P, S7P and X5P are 3.81E-6, 0.1007, 0.1433 and 0.1597, respectively, all the US products of the pKH1 for these reactants are <0.01. Therefore, the assumption of equivalent dissociation properties for E4P, R5P, RU5P, S7P and X5P does not substantially effect our calculations.

Figure 3A illustrates that US products span eight orders of magnitude. Figure 3B illustrates the detailed distribution of the US products >0.01. All US products are <0.11. There are 23 cases for which US >0.01. These 23 US values belong to 15 reactants and four pKs as listed in Table 8. They are a subset of the pKs with sensitivity >0.1. They demonstrate the most important pKs which can make obvious impact on the model output. The largest four US values are formula as indicated in Figure 3B.

(A) Distribution of the product of uncertainty and sensitivity (US) for all pK values; (B) detailed distribution of the product >0.01.
Figure 3.

(A) Distribution of the product of uncertainty and sensitivity (US) for all pK values; (B) detailed distribution of the product >0.01.

Table 8.

The product (formula) >0.01 in dissociation constants uncertainty and sensitivity analysis

Reactant abbreviationformula
ADPformula
ATPformula
CITformula
COASformula
DHAPformula,formula
F16Pformula
G6Pformula
GDPformula
GTPformula
ISCITformula
Piformula
NADPoxformula
NADPredformula
PG2formula
PG3formula
Reactant abbreviationformula
ADPformula
ATPformula
CITformula
COASformula
DHAPformula,formula
F16Pformula
G6Pformula
GDPformula
GTPformula
ISCITformula
Piformula
NADPoxformula
NADPredformula
PG2formula
PG3formula
Table 8.

The product (formula) >0.01 in dissociation constants uncertainty and sensitivity analysis

Reactant abbreviationformula
ADPformula
ATPformula
CITformula
COASformula
DHAPformula,formula
F16Pformula
G6Pformula
GDPformula
GTPformula
ISCITformula
Piformula
NADPoxformula
NADPredformula
PG2formula
PG3formula
Reactant abbreviationformula
ADPformula
ATPformula
CITformula
COASformula
DHAPformula,formula
F16Pformula
G6Pformula
GDPformula
GTPformula
ISCITformula
Piformula
NADPoxformula
NADPredformula
PG2formula
PG3formula

Database dissemination

ThermoML is an extensible markup language (XML)-based approach, which is an IUPAC standard for storage and exchange of thermodynamic property data (29–32). Our optimized results are stored in the standard ThermoML format with two small extensions to the current ThermoML schema (32): (i) adding ‘pseudo-Gibbs free energy of formation, kJ/mol’ in the list of ePropName in BioProperties of PureOrMixtureData; and (ii) adding ‘biochemical network calculation’ in ePredictionType of Prediction. We use the term ‘pseudo-Gibbs free energy of formation’ because in our thermodynamic model the estimated formula values represent adjustable parameters for the given set of interdependent biochemical reactions. In our ThermoML data files, the abbreviation name of reactant is also added in sCommonName in Compound. In the ThermoML reaction database, if the value of formula is not available, it is specified in sPredictionMethodDescription, and both nPropValue and nPropDigits are set to 0 in PropertyValue of NumValues. The ThermoML schema and our ThermoML data files are provided in Supplementary Data.

Discussion

We have updated our biochemical thermodynamic database by adding the reactions of the pentose phosphate pathway. To build the new database, each original publication has been studied on a case-by-case basis, case-specific assumptions and approximations determined and documented, and case-specific calculations performed and documented. Raw data and documented estimations of solution properties are made electronically available so that the updated database remains transparent and extensible.

The developed database is optimally self-consistent and consistent with the data available for reactions considered and the constraints. Theoretical predictions of apparent equilibrium constants optimally match experimental data on equilibrium constants. These apparent equilibrium constants are predicted based on the estimated species-level Gibbs free energies of formation and accounting for the effects of temperature, ionic interactions and hydrogen and metal cation binding. The new database provides thermodynamic and network-based estimates of thermodynamic properties for six reactions of the pentose phosphate pathway for which estimates are not available in the pre-existing literature.

These calculations demonstrate how network thermodynamic calculations are effectively extended. Adding raw experimental data on reactions and reactants of the pentose phosphate pathway into corresponding raw-data database, reaction database and reactant database, respectively, a previous thermodynamic network model was extended to include these elements.

Although the new optimal estimates of formula for reactants of glycolysis and tricarboxylic acid cycle are equal to previous estimates (7), most of the optimal predicted formula values which are associated with the formula predictions are shifted compared to the previous version. This result demonstrates that reliable and self-consistent extensions require the recalculation of entire set of species-level parameters. Furthermore, sensitivity analysis reveals that some formation energies can vary substantially without changing the optimized objective value significantly. While this set of optimal values represents a self-consistent set, combining these estimated formation energies with independently estimated parameters from other studies would require re-optimizing a combined database.

The uncertainty and sensitivity analysis of dissociation constants reveals 23 pKs most important to the model output. Additional experimental measurements of these parameter values are desirable.

Supplementary Data

Supplementary data are available at Database Online.

Acknowledgements

The authors are grateful to Robert Goldberg for advice and critical comments.

Funding

National Institutes of Health Heart Lung and Blood Institute (grant number HL072011). Funding for open access charge: National Institutes of Health Heart Lung and Blood Institute.

Conflict of interest. None declared.

References

1
Vojinović
V
von Stockar
U
Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways
Biotechnol. Bioeng.
2009
, vol. 
103
 (pg. 
780
-
795
)
2
Mavrovouniotis
ML
Hunter
L
Searls
DB
Shavlik
JW
Identification of localized and distributed bottlenecks in metabolic pathways
Proceedings of the First International Conference on Intelligent Systems for Molecular Biology
1993
Bethesda, MD
AAAI Press
(pg. 
275
-
283
)
3
Yang
F
Beard
DA
Thermodynamically based profiling of drug metabolism and drug-drug metabolic interactions: a case study of acetaminophen and ethanol toxic interaction
Biophys. Chem.
2006
, vol. 
120
 (pg. 
121
-
134
)
4
Kümmel
A
Panke
S
Heinemann
M
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
Mol. Syst. Biol.
2006
, vol. 
2
  
2006.0034
5
Henry
CS
Broadbelt
LJ
Hatzimanikatis
V
Thermodynamics-based metabolic flux analysis
Biophys. J.
2007
, vol. 
92
 (pg. 
1792
-
1805
)
6
Vinnakota
KC
Wu
F
Kushmerick
MJ
et al. 
Multiple ion binding equilibria, reaction kinetics, and thermodynamics in dynamic models of biochemical pathways
Methods Enzymol.
2009
, vol. 
454
 (pg. 
29
-
68
)
7
Li
X
Dash
RK
Pradhan
RK
et al. 
A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle
J. Phys. Chem.
2010
, vol. 
114
 (pg. 
16068
-
16082
)
8
Alberty
RA
Thermodynamics of Biochemical Reactions
2003
Hoboken, NJ
John Wiley
9
Beard
DA
Qian
H
Conventions and calculations for biochemical systems
Chemical Biophysics: Quantitative Analysis of Cellular Systems
2008
Cambridge, UK
Cambridge University Press
(pg. 
24
-
40
)
10
Alberty
RA
Thermodynamic properties of weak acids involved in enzyme-catalyzed reactions
J. Phys. Chem. B
2006
, vol. 
110
 (pg. 
5012
-
5016
)
11
Clarke
ECW
Glew
DN
Evaluation of Debye–Hückel limiting slopes for water between 0 and 150°C
J. Chem. Soc., Faraday Trans. 1
1980
, vol. 
76
 (pg. 
1911
-
1916
)
12
Alberty
RA
Effect of temperature on standard transformed Gibbs energies of formation of reactants at specified pH and ionic strength and apparent equilibrium constants of biochemical reactions
J. Phys. Chem. B
2001
, vol. 
105
 (pg. 
7865
-
7870
)
13
Alberty
RA
Calculation of thermodynamic properties of species of biochemical reactants using the inverse legendre transform
J. Phys. Chem. B
2005
, vol. 
109
 (pg. 
9132
-
9139
)
14
Glaser
L
Brown
DH
Purification and properties of D-glucose-6-phosphate dehydrogenase
J. Biol. Chem.
1955
, vol. 
216
 (pg. 
67
-
79
)
15
Casazza
JP
Veech
RL
The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats
J. Biol. Chem.
1986
, vol. 
261
 (pg. 
690
-
698
)
16
Villet
RH
Dalziel
K
The nature of the carbon dioxide substrate and equilibrium constant of the 6-phosphogluconate dehydrogenase reaction
Biochem. J.
1969
, vol. 
115
 (pg. 
633
-
638
)
17
Axelrod
B
Jang
R
Purification and Properties of Phosphoriboisomerase from Alfalfa
J. Biol. Chem.
1954
, vol. 
209
 (pg. 
847
-
855
)
18
Hurwitz
J
Horecker
BL
The purification of phosphoketopentoepimerase from lactobacillus pentosus and the preparation of xylulose 5-phosphate
J. Biol. Chem.
1956
, vol. 
223
 (pg. 
993
-
1008
)
19
Datta
AG
Racker
E
Mechanism of action of transketolase
J. Biol. Chem.
1961
, vol. 
236
 (pg. 
617
-
623
)
20
Goldberg
RN
Tewari
YB
Bell
D
et al. 
Thermodynamics of enzyme-catalyzed reactions: Part 1. Oxidoreductases
J. Phys. Chem. Ref. Data
1993
, vol. 
22
 (pg. 
515
-
82
)
21
Goldberg
RN
Tewari
YB
Thermodynamics of enzyme-catalyzed reactions: Part 2. Transferases
J. Phys. Chem. Ref. Data
1994
, vol. 
23
 (pg. 
547
-
617
)
22
Goldberg
RN
Tewari
YB
Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases
J. Phys. Chem. Ref. Data
1995
, vol. 
24
 (pg. 
1765
-
1801
)
23
Nelson
DL
Cox
MM
Glycolysis, gluconeogenesis, and the pentose phosphate pathway
Lehninger Principle of Biochemistry
2005
New York
W. H. Freeman and Company Press
24
Perrin
DD
Dempsey
B
Serjeant
EP
pKa Prediction for Organic Acids and Bases
1981
London and New York
Chapman and Hall
25
Goldberg
RN
Tewari
YB
Thermodynamic and transport properties of carbohydrates and their monophosphates: the pentoses and hexoses
J. Phys. Chem. Ref. Data
1989
, vol. 
18
 (pg. 
809
-
880
)
26
Godt
RE
Maughan
DW
On the composition of the cytosol of relaxed skeletal muscle of the frog
Am. J. Physiol. Cell Physiol.
1988
, vol. 
254
 (pg. 
C591
-
C604
)
27
Smith
RM
Martell
AE
Motekaitis
RJ
NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes
NIST Standard Reference Data
2004
Gaithersburg, MD
28
Wu
F
Yang
F
Vinnakota
KC
et al. 
Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology
J. Biol. Chem.
2007
, vol. 
282
 (pg. 
24525
-
24537
)
29
Frenkel
M
Chirico
RD
Diky
VV
et al. 
ThermoML - an XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 1. Experimental data
J. Chem. Eng. Data
2002
, vol. 
48
 (pg. 
2
-
13
)
30
Chirico
RD
Frenkel
M
Diky
VV
et al. 
ThermoML - an XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 2. Uncertainties
J. Chem. Eng. Data
2003
, vol. 
48
 (pg. 
1344
-
1359
)
31
Frenkel
M
Chirico
RD
Diky
VV
et al. 
ThermoML - an XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 3. Critically evaluated data, predicted data, and equation representation
J. Chem. Eng. Data
2004
, vol. 
49
 (pg. 
381
-
393
)
32
Chirico
RD
Frenkel
M
Diky
V
et al. 
ThermoML - an XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 4. Biomaterials
J. Chem. Eng. Data
2009
, vol. 
55
 (pg. 
1564
-
1572
)
33
Goldberg
RN
Tewari
YB
Thermodynamics of enzyme-catalyzed reactions. Part 3. Hydrolases
J. Phys. Chem. Ref. Data
1994
, vol. 
23
 (pg. 
1035
-
1103
)
34
Alberty
RA
Standard transformed formation properties of carbon dioxide in aqueous solutions at specified pH
J. Phys. Chem.
1995
, vol. 
99
 (pg. 
11028
-
11034
)
35
Tewari
YB
Steckler
DK
Goldberg
RN
et al. 
Thermodynamics of hydrolysis of sugar phosphates
J. Biol. Chem.
1988
, vol. 
263
 (pg. 
3670
-
3675
)
36
Martell
AE
Smith
RM
Motekaitis
RJ
NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes
NIST Standard Reference Data
2004
Gaithersburg, MD
37
Larsson-Raźnikiewicz
M
Complex formation between 3-phospho-D-glyceric acid and divalent metal ions
European Journal of Biochemistry
1972
, vol. 
30
 (pg. 
579
-
583
)
38
Merrill
DK
McAlexander
JC
Guynn
RW
Equilibrium constants under physiological conditions for the reactions of -3-phosphoglycerate dehydrogenase and -phosphoserine aminotransferase
Arch. Biochem. Biophys.
1981
, vol. 
212
 (pg. 
717
-
729
)
39
Briggs
TN
Stuehr
JE
Simultaneous potentiometric determination of precise equivalence points and pK values of two- and three-pK systems
Anal. Chem.
1975
, vol. 
47
 (pg. 
1916
-
1920
)

Appendix A

Calculating the physiological free energy formula

The standard free energy formula can be calculated based on the equilibrium constant K, for a reference chemical reaction:
(A.1)
where T0 = 298.15 K, I0 = 0 M, R = 8.3145 J K−1 mol−1.
The apparent equilibrium constant, formula for the associated biochemical reaction can also be calculated based on K:
(A.2)
where vH is the stoichiometric coefficient associated with H+ in the reference reaction, Pj is the binding polynomial associated with species j and vj is the stoichiometric coefficient of species j. If assuming that the activity coefficient for hydrogen ion is equal to 1, i.e. pH = −log10([H+]), the physiological free energy formulacan then be obtained based on equations (A.1) and (A.2):
(A.3)
The first term in the right-hand side of equation (A.3) can be separated into four terms as shown in equation (A.6) based on equations (A.4) and (A.5) (7):
(A.4)
(A.5)
(A.6)
where pK is the negative base-10 logarithm of equilibrium constant K, formula is the standard reaction enthalpy at ionic strength I0, zi is the valence of species i, B is an empirical constant taken to be 1.6 M−1/2, and α(T) is the coefficient in the Debye equation formula
The non-standard element (temperature, ionic strength, pH and binding polynomial) contributions formula are defined as follows:
(A.7)
(A.8)
(A.9)
(A.10)
Then the physiological free energy formula can be expressed by the summation of the standard free energy formula and the non-standard element contributions formula:
(A.11)
Example
The calculations the physiological free energy formula for reaction glucokinase GLK (EC 2.7.1.1) is illustrated as an example. As mentioned in the article, the physiological conditions are T = 310.15 K, I = 0.18 M, pH = 7, [Mg2+] = 0.8 mM, [K+] = 140 mM, [Na+] = 10 mM, [Ca2+] = 0.0001 mM. The optimized standard free energy (formula) of GLK is 16.19 kJ/mol, as shown in Table 4. Equilibrium constant for the chemical reference reaction can be computed as formula The chemical reference reaction of GLK is
vH = 1 in this reference reaction, and formula Thus, the pH and ionic strength contributions can be calculated as follows:
As shown in Table 1 in the article, formula kJ/mol. Then temperature contribution can be obtained
In order to calculate binding polynomial contribution formula the binding polynomial Pj for each reactant j should be first calculated (7):
(A.12)
where Kdi is the dissociation constant of cation ion d. The negative base-10 logarithm of dissociation constant pKd (formula) for all reactants are listed in Table 2 in the article. Temperature and ionic strength should be done to transform all the dissociation constants to T = 310.15 K and I = 0.18 M before calculating the binding polynomial Pj. For reaction GLK,
Therefore, the physiological free energy for reaction glucokinase GLK is
The total difference is formula The percentages of the contributions of non-standard elements to this difference are

Nomenclature

B: an empirical constant taken to be 1.6 M−1/2

E: the minimum squared difference between model simulations and experimental data

formula: standard Gibbs free energy of reaction

formula: standard Gibbs free energy of formation of  species i

formula: apparent Gibbs free energy of reaction

formula: enthalpy of proton/metal cation dissociation

formula: standard enthalpy of reaction

I: ionic strength

K: chemical (reference reaction) equilibrium constant

formula: apparent equilibrium constant

Kdi: the dissociation constant of cation ion d

M: the number of reactions

N: the number of pKs which have several values available  in NIST database

Nj: the number of experimental data in each reaction

Pj: binding polynomial associated with reactant j

pK: negative logarithm of the dissociation constant

R: gas constant, 8.3145 J K−1 mol−1

S: sensitivity

T: temperature

U: uncertainty

vi: stoichiometric coefficient for species i in a given  reaction

zi: valence of species i

formula: the ionic strength contribution

formula: the pH contribution

formula: the binding polynomial contribution

formula: the temperature contribution

This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.