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Abstract

Tracking scientific research publications on the evaluation, utility and implementation

of genomic applications is critical for the translation of basic research to impact clin-

ical and population health. In this work, we utilize state-of-the-art machine learning

approaches to identify translational research in genomics beyond bench to bedside

from the biomedical literature. We apply the convolutional neural networks (CNNs) and

support vector machines (SVMs) to the bench/bedside article classification on the weekly

manual annotation data of the Public Health Genomics Knowledge Base database.

Both classifiers employ salient features to determine the probability of curation-eligible

publications, which can effectively reduce the workload of manual triage and curation

process. We applied the CNNs and SVMs to an independent test set (n = 400), and

the models achieved the F -measure of 0.80 and 0.74, respectively. We further tested

the CNNs, which perform better results, on the routine annotation pipeline for 2 weeks

and significantly reduced the effort and retrieved more appropriate research articles. Our

approaches provide direct insight into the automated curation of genomic translational

research beyond bench to bedside. The machine learning classifiers are found to be

helpful for annotators to enhance the efficiency of manual curation.
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Introduction

Advances in human genomic research promise a new era
of precision medicine and personalized healthcare. Beyond
basic discoveries and development of genomic tests and

related intervention, the success of genomic medicine will
increasingly depend on translational research beyond bench
to bedside, including studies of clinical validity and utility,
and the study of dissemination and implementation of
evidence-based genomic applications (1). In the rapidly
developing field of translational genomic medicine, finding

and curating related research is highly critical for improving
health care and population health (2, 3). However, this
curation task requires knowledge of multiple disciplines,
such as clinical trials, epidemiology, behavioral and social
science, health services research, implementation science
and economics. The workflow of collecting and integrating
data is both time-consuming and costly through manual
curation. As a result, the rapid growth of biomedical liter-
ature creates barriers to the transfer of knowledge between
basic discoveries and public health impact.

One classification of translational research continuum
involves four phases beyond an initial discovery. T1
research involves the development of candidate applications

such as tests, treatments and other interventions (classical

bench to bedside); T2 research evaluates the clinical

utility of candidate applications leading to evidence-based

recommendations for practice; T3 research integrates
evidence-based recommendations into clinical practice

(implementation science); and T4 research assesses the
outcomes and population impact of genomics in the real
world (2). Note that ‘beyond bench-to-bedside’ phases

(T2–T4) include the evaluation, utility and implementation
of evidence-based applications into clinical practice and
evaluation of the impact these applications have on
population health. However, it is reported that <2% of
the published literature on human genomics is within
T2–T4 (1).

To develop a baseline for progress in translation of
genomic medicine into practice, the Office of Public Health

Genomics (OPHG) of the Centers for Disease Control and

Prevention in collaboration with the National Cancer Insti-
tute and the National Heart, Lung and Blood Institute have
been regularly curating the genomic translational literature
since 2012, which is housed in the Public Health Genomics
Knowledge Base (PHGKB) (4).

With the increasing number of genomic research arti-
cles from bench to bedside and beyond, the workload for
manual curation of articles relevant to the latter stages of
translational research has also increased exponentially. In

this work, we aim to assist manual curation with auto-
mated text mining methods, as successfully demonstrated

by few recent studies (5–7). Specifically, we employ previ-
ously annotated data sets by PHGKB and develop machine
learning approaches to automatically classify the articles
belonging to T2–T4 phases.

Supervised machine learning methods such as support
vector machine (SVM) have been shown to be effective for
document classification (8). Surkis et al. (9) categorized
translational publications from T0 to T4 by applying
machine learning-based text classifiers, and the SVM
achieved the best performance among the comparison
methods. However, there are some limitations in such
a method. For instance, the ‘bag-of-words’ feature in
their method did not fully capture semantic or syntactic
information. Second, their method made use of the medical
subject headings (MeSH) indexing terms as a feature, but
MeSH terms, generally speaking, are not immediately
available upon article publication (10). Nonetheless, we
include the SVM as a comparison algorithm given its
superior performance in the previous study.

More recently, deep neural network-based approaches
have shown improved results in many natural language pro-
cessing (NLP) tasks including text classification (11). Neu-
ral network-based approaches such as the convolutional
neural network (CNN) have been applied to assist docu-
ment triage of kinome curation, genomic variation and pro-
tein–protein interactions (12–14). Lee et al. (13) employed
the CNN to identify publications that are relevant for
variant curation. They demonstrated that the deep learning-
based classifier outperforms traditional machine learning
classifiers without feature engineering. Luo et al. (14) used
the ensemble of the neural network models to achieve
state-of-the-art performance on the document triage task
of BioCreative VI Track 4: mining protein interactions and
mutations for precision medicine (15). Hence, in this work,
we propose to capture the characteristics of beyond bench-
to-bedside phase articles using a CNN-based approach (16).
Through evaluation, we find that our proposed method is
highly accurate and has the potential to greatly improve
the current workflow of curating beyond bench-to-bedside
articles in genomic translational research.

Materials and methods

Data sets

The training and test data sets for the translational phases
classification (TPC) task were provided by OPHG. The data
sets were previously collected, reviewed and annotated by
The Centers for Disease Control and Prevention (CDC)
curators according to the schema defined in (2). In the TPC
task, the articles are classified into two separate transla-
tional phases: the initial bench-to-bedside phases (T1) and
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Figure 1. The CNNs for the TPC task.

the beyond bench-to-bedside phases (T2–T4). In total, the
training data set consists of 2286 articles, including 1379
articles in T1 and 907 articles in T2–T4 (published from 23
August 2016 to 14 October 2016). The test set consists of
400 articles, including 241 articles in T1 and 159 articles in
T2–T4 (published after October 2016).

Machine learning algorithms

We formulate the TPC task as a binary document classi-
fication task and experiment with two machine learning
algorithms. SVMs are supervised learning models based on
a statistical learning theory (17), and it has been used to
many text classification problems with a state-of-the-art
performance. The SVMs usually involve training samples
with many features and labeled classes (18). Next, the SVMs
find a hyperplane that divides the sample into different
groups and produce an inferred function to test the charac-
teristics of the samples. After model training, the classifier
can efficiently predict the correct class labels for unknown
instances. In this work, linear SVMs are used as a baseline
method and we train them using the article title and abstract
with the bag-of-words model. In addition, we have also
tested features such as the journal title, but none was able
to result in an improved performance overall. We use the
5-fold cross-validation results on the training set to choose
the best parameters (C = 1000) for our SVM classifier, e.g.
we search for the best value for C (cost) value to avoid
overfitting by balancing the performances on training and
test data.

CNNs are one kind of artificial neural networks.
Figure 1 gives an illustration of the architecture of
our CNN-based classifier, derived from (19). The main
characteristics of CNNs are convolutional layers, pooling
layers and fully connected layers. The former detects
patterns in multiple subregions and extracts salient features
by filter weights, which generate a large amount of feature
maps. After the convolutional layers, the pooling layers
down-sample the feature maps and control overfitting
by reducing the number of parameters. Next, the fully
connected layers are responsible for transforming and

voting important features from convolutional and pooling
layers. The fully connected layers consist of flatten, hidden
and softmax output layers, and we can obtain predicted
class probabilities at the last stage. Note that the fully
connected layers often involve with a large amount of
computation, such as adjusting weights of networks and
connecting strength between neurons (backpropagation). In
recent years, CNNs have been shown to be effective in many
NLP tasks, such as sentence modeling and classification
(20, 21). In this work, we use the Keras library (22) within
TensorFlow (23) and empirically optimize CNN parameters
based on the training data (also see details in Discussion
and Supplementary Table S2). Note that we followed the
implementation and data preprocessing on the use of
Convolution1D for text classification, available at https://
github.com/keras-team/keras/blob/master/examples/imdb_
cnn.py.

Method validity assessment

In the TPC task, we use precision, recall and the F-measure
to calculate the performance score. Precision is the fraction
of the number of relevant T2–T4 articles divided by the
total number of predicted articles in this category. Recall
is the fraction of the number of relevant T2–T4 articles
divided by the number of actual T2–T4 articles in the gold-
standard data set. The F-measure is the harmonic mean
of recall and precision, which is calculated as follows: F-
measure = 2 × [(recall × precision)/(recall + precision)].

We first perform cross-validation experiments on the
training data set. The best-tuned model is then applied to
the independent data in the test set.

Utility assessment

In addition to evaluating its validity, we also assess its utility
in the real-world task of curating translational articles in
PHGKB. In their routine workflow, human curators typi-
cally run eight PubMed queries (Supplementary Table S1)
related to precision medicine twice a week and then
manually examine all new search results before adding
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Table 1. The 5-fold cross-validation results on training set

Method Precision Recall F1

CNN 0.7681 0.8785 0.8196
SVM 0.7688 0.7354 0.7517

relevant ones to PHGKB. Moreover, they use PubMed’s
similar articles search to retrieve additional new candidate
articles based upon a set of 283 translational research arti-
cles (https://media.nature.com/original/nature-assets/gim/
journal/v19/n8/extref/gim2016210x1.doc) they previously
identified (24). All new articles retrieved in both searches
are then combined for a human review. Currently, the
combined set of articles is sorted by their publication date
during the human review. Alternatively, we propose to rank
them by their likelihood to be translational articles, based
on the predicted scores of CNN classifier. By doing so,
we aim to establish a prioritized article review process to
enable curators to focus on articles that are more likely to
be relevant.

To test our hypothesis, we performed additional evalu-
ation based on 2 weeks’ worth of data in June 2017: from
6 June 2017 to 12 June 2017 (week 1), there are 1550
new articles collected in total and 62 are coded as T2–T4
articles by OPHG curators. Similarly, 1554 articles were
retrieved between 22 June 2017 and 28 June 2017 (week
2) and 43 were coded as positive T2–T4 articles. Based on
these data, we compute and compare the receiver operating
characteristic (ROC) curve for two ranking strategies: sort
by date versus by predicted relevance score of our classifier.

Results

Method validity

As shown in Table 1, the CNN-based classifier achieves the
best F-measure of 0.8196, with a higher recall than preci-
sion during the cross-validation experiments on the training
set. Similarly, Table 2 shows the classification results on the
independent test set. As can be seen, overall both classifiers
yield slightly lower performances compared to the cross-
validation results in Table 1. However, the CNN classifier
still outperforms the SVM classifier consistently by a similar
margin.

Method utility

As shown in Figure 2, the ROC curves indicate that our
CNN classifier significantly outperforms the baseline
method: it achieves an improvement of 29.6% and 28.6%

Table 2. The performance of the SVM and CNN models on the

test set

Method Precision Recall F1

CNN 0.7614 0.8428 0.8000
SVM 0.7615 0.7232 0.7419

Table 3. Statistics of FP and FN errors

FPs FNs

Number of errors in the gold standard
(mis-curated in the past)

6 1

Number of borderline articles (could be
either T1 or T2 and above)

7 5

Number of mis-classified by our CNN
method

29 19

Total 42 25

for the 2 weeks, respectively. In addition, our analysis shows
that on average in those 2 weeks, a curator only needs to
review the top half of the papers when ranked by our CNN
method in order to retrieve all relevant ones, suggesting an
approximate saving of 50% in human curation time.

Error analysis

In this work, we exploit machine learning to classify
genomic research translational phase articles from the
PHGKB and have achieved high classification accuracy
overall. To better understand the computer predictions,
we manually analyzed the classification errors of our CNN
model on the test set, which includes 42 false positives (FPs)
and 25 false negatives (FNs). The overall results are shown
in Table 3. There are six FPs and one FN that were found
to be incorrectly curated previously in the gold standard.
There are also 12 borderline cases (7 in FPs and 5 in FNs)
where the labels are somewhat ambiguous according to the
curation criteria. Of the remaining 29 FPs, 5 articles are
found to be case studies or meta-analysis of gene–disease
associations (which are outside the scope) and 16 articles
do not explicitly discuss human genetics or clinical utility.
Of the 19 FNs, 2 articles do not have abstracts (i.e. only
title information was used for the classification) and 10
articles describe pharmacogenomics, clinical screening or
management (which are highly relevant to gene–disease
associations).

Discussion

As mentioned earlier, for optimizing the CNN classifier per-
formance, we empirically tested different parameters during
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Figure 2. Comparing CNN with the baseline date-sort method using ROC curves.

the 5-fold cross-validation experiments on the training set.
During the model training phase, its batch size controls
the number of samples propagating through the CNN
network. Hence, tuning the batch size affects the training
loss curve and computation efficiency. Furthermore, the
kernel size at convolutional layers defines the dimensions
of feature maps, and this value affects how much the
neighbor information can be processed. To obtain the best
parameters of batch size and kernel size, we benchmarked
with different combinations of the two parameters and
subsequently analyzed the performance. We observed that
the best value for the kernel size is 8 on our data. As for the
batch size, we observed that the peak performance appears
when it is between 50 and 80 (see Supplementary Table S2
also).

The classification task is quite challenging by nature, in
that the number of translational articles is much smaller
compared to basic research articles. To tackle the lack of
positive training samples, interactive machine learning (25)
might be worth exploring in the future. Since our CNN
model uses word features to perform the classification task,
it would be helpful to capture the important words involved
in the machine decisions such that human experts can
further analyze these word features and suggest additional
improvements. A user-friendly visualization tool for neural
networks can help in this regard. In the meantime, manual
curators can also benefit from an explainable system (26)
to feel more comfortable working with artificial intelligence
(AI) algorithms.

Because the number of beyond bench-to-bedside phase
publications is relatively small compared to initial discovery
phase publications, it is difficult to further distinguish them
into T2, T3 and T4 stages via machine learning, separately.

This implies that a second level analysis with manual cura-
tion can differentiate the articles in T2, T3 or T4. Since
there is a rapid increase in the number of publications
within genomic research, the TPC task via machine learning
would become complicated when an increasing proportion
of genomic research publishes in later phases of translation.

In summary, our proposed approach using machine
learning helps the horizon scanning to classify genomic
translational research sufficiently, and a machine learning-
based curation system is important to help curators
successfully extract and address the later translational
phases of genomic applications. We also expect that our
approaches will decrease the published literature curation
time to assist in the acceleration of genomic translational
research. In our future work, we hope to clarify the
influence of text features related to diseases and human
genomics in the TPC task.

Supplementary data
Supplementary data are available at Database Online.
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