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Abstract

Identifying the interactions between chemical compounds and genes from biomedical

literatures is one of the frequently discussed topics of text mining in the life science field.

In this paper, we describe Linguistic Pattern-Aware Dependency Tree Kernel, a linguistic

interaction pattern learning method developed for CHEMPROT task–BioCreative VI, to

capture chemical–protein interaction (CPI) patterns within biomedical literatures. We

also introduce a framework to integrate these linguistic patterns with smooth partial

tree kernel to extract the CPIs. This new method of feature representation models

aspects of linguistic probability in geometric representation, which not only optimizes

the sufficiency of feature dimension for classification, but also defines features as inter-

pretable contexts rather than long vectors of numbers. In order to test the robustness

and efficiency of our system in identifying different kinds of biological interactions, we

evaluated our framework on three separate data sets, i.e. CHEMPROT corpus, Chem-

ical–Disease Relation corpus and Protein–Protein Interaction corpus. Corresponding

experiment results demonstrate that our method is effective and outperforms several

compared systems for each data set.

Introduction

Increasing digitization of knowledge over the past decade
has resulted in a multiverse of information pool, which can

be tapped to explore various characteristic inferences from
the data pool; these entity associations can be quantified
and analyzed for varied purposes. The pinnacle of such text
analysis and information identification hinges on ‘relation
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extraction’ between relevant entities mentioned within a
sentence. To accomplish natural language understanding, it
becomes paramount to address the task of identifying cor-
rect relational terms and entities bound in such associations.
Therefore, research on relation extraction has garnered
tremendous attention for many years. Extraction of these
associations is even more important to life scientists as it
provides them greater insight into the biological nature of
the context while investigating the biological entities of
interest.

Compared to yesteryears, the scale of such research has
been bolstered by the introduction of precision medicine
where identification of specific interaction with a range
of different genotypes holds the key to treating patients
effectively. Increasing granularity brought in by specific
interaction identification using natural language processing
can aid medical health professionals to deliver a speedy
diagnosis and a targeted treatment plan to patients. In
an effort to mobilize this trend, BioCreative has intro-
duced many entity-based relation extraction tasks in recent
years, including the identification of protein–protein inter-
action (PPI) (19), chemical-induced disease identification
(CID) (15) and chemical–protein interaction (CPI) (26). We
participated in BioCreative VI–CPI task and developed a
Linguistic Pattern-Aware Dependency Tree Kernel (LPTK)
model for studying bio-entity association types mentioned
between chemicals and proteins. CPI task is a text mining-
based task, where PubMed abstracts are studied to identify
nature of different interaction types triggered by chemical
compounds/drugs interacting with genes/proteins. These
interactions refer to all direct as well as indirect regu-
latory associations between a chemical and protein/gene,
where the association results in physical, functional or
quantitative change in the gene product (protein) (26). The
task guidelines specify the identification of five chemical–
protein relation (CPR) classes from a set of abstracts. These
classes are defined as Up Regulators—CPR3, Down Reg-
ulators—CPR4, Agonist—CPR5, Antagonist—CPR6 and
Substrate/Product Of—CPR9. Apart from these, the guide-
line also establishes CPR10–NOT category, which is used
to annotate non-interacting but co-mentioned chemical–
protein entity pairs (26). CPI is an integral part of our
metabolism with several different kinds of interactions reg-
ulating various biological pathways for normal functioning.
Therefore, the task of extracting CPIs has potential impli-
cations in automating and upgrading the way precision
medicine is conducted.

Machine learning-based methods are vastly data
dependent, not only with respect to the size and structure of
training data but also on the representation of data features
prior to learning. These representations are responsible for
identifying explanatory factors of variation within the data,

which makes classifier-based learning effective (45). Repre-
sentation models, be it n-gram word models or vectorized
representations, all use statistical conditional probabilities
to study sequenced associations among words for feature
representation. In this study, we introduce an improved
tree representation by characterizing contextual relational
segment within a sentence as representative features corre-
sponding to their invariant properties. We refer to these
corpora wide-identified invariant features as ‘linguistic
patterns’, which can communicate the essential contextual
information while retaining their brevity. These invariance-
based linguistic patterns are human-readable and reusable
and can therefore be deployed in contextually similar rela-
tion extraction tasks. In addition, the context optimization
delivered by these patterns helps reduce the data noise in
tree representations, thereby improving the classification
performance over other currently available lexical tree ker-
nel representations. As a part of our relation identification
strategy, we first perform a CPI pair identification (binary
classification) using patterns based on non-interacting
[CPR 10] versus interacting entity pairs [CPR 3, CPR 4,
CPR 5, CPR 6 and CPR 9]. In the second phase, One-Vs-
All (OvA, multi-class classification) approach is deployed to
screen for specific CPR pair from each positively identified
instance obtained during binary classification.

Our linguistic pattern representation model is generic
and can be adapted for any binary relation detection task.
Consequently, as an extension and corroboration of the
findings from CPI task study, we extended the performance
testing of our LPTK approach on two other substantial bio-
entity relation identification corpora, i.e. Chemical–Disease
Relation (CDR) and PPI. The model fared well with both
the corpora while displaying consistency and efficiency of
LPTK approach, particularly with bio-entity-based relation
extraction tasks.

The remainder of this paper is organized as follows.
In the next section, we review Related works documented
previously. We describe details of the proposed system in
the Methods section. The Experiments section shows the
experiment results and presents further comparison of our
work with other systems. Finally, we conclude our work in
the Concluding remarks section.

Related works

Entity-based interaction identification tasks have been
introduced as a part of many challenges and collaborative
endeavors in recent years. Although the CPI task provides
a new compilation of CPI resources, the task of relation
extraction between various biological entities isn’t a novel
one. Works using dependency parser-based features for
graph kernels (GKs) to sort complex PPIs were introduced
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by Ariola et al. (1) and Qian et al. (35). The shortest
path tree built on premise of such methods impressively
captured segments of text depicting true associations. In
addition to dependency parser-based features, experiments
have been done with normalization and pattern generation
where Chang et al. (2) generated normalized patterns,
which signified trigger words involved within the protein
interactions. Screened for the pattern-associated instances,
the features derived from the shortest dependency path
were used to determine true protein interactions. PPI
focuses on intra-sentence relations (relational associations
between entities discussed within the boundaries of same
sentence) as opposed to the addition of inter-sentence
relation (relational associations between entities discussed
across the boundaries of sentences) introduced in the CID
task.

The CDR corpus in CID task–BioCreative V was devel-
oped to capture interactions between chemicals and diseases
at both intra- and inter-sentence level. This added level
of complexity led to changed strategy for processing the
abstracts. Many learning techniques developed for CID
focused on splitting learning methodologies between intra-
and inter-sentence scenarios. Co-occurrence (CO) has been
used to resolve ambiguity in locating heterogeneous entity
pairs, upon which separate models tend to learn associ-
ations in either data sets. Xu et al. (44) and Li et al.
(22) focused on exploiting sentence level and document-
level classifiers to establish entity pairs involved in either
structure, while Gu et al. (13) relied on isolating intra- and
inter-sentence relations and then feeding them separately
into Convolution Neural Network (CNN) and Maximum
Entropy (ME) models, respectively. Coupled with learning
methods, many systems incorporated features either directly
based on or perfected via the use of external knowledge
base (KB). Pons et al. (34) used Euretos Knowledge Platform
(https://www.euretos-brain.com), a graph database to gen-
erate one set of features. The database provides a directed
graphical structure for entity pairs with differing weights
as provenance accounts for every pair across structured
databases. One of the top performing systems in this task
developed by Xu et al. (44) experimented with a set of
features contingent upon external KB using MeSH, MEDI
(50), SIDER (20) and CTD (8) databases for prior mentions
of entity pairs in association. These lookups of external
KBs aided in assigning a weight bias to identified pairs
for efficient screening of association. Other than KBs, vari-
ous linguistic features ranging from Bag of Words (BOW),
n-grams word frames, term normalization, positional verb
lemmas, dependency parser-based word segments and word
embedding are employed in the CID task (12, 13). With this
task, a gradual shift in the use of multi-kernel classifiers was
noticed as depicted in the works of Gu et al. (12, 13), which

began with the selection of deep learning techniques like
CNN and Long Short-Term Memory (LSTM) for sentence-
level classification in bio-entity relation identification tasks.

To date, relation extraction tasks have focused heavily
on either protein or chemical interactions individually.
In a pioneering effort while participating in the protein
localization relation identification task, Kumlien and
Craven (5) worked in part on drug–protein identification
employing BOW, relational dependencies and external KB-
based entities as features for Naive Bayes classifier. Later,
a comprehensive NLP tool called EDGAR was developed
by Rindflesch et al. (36), which catered for identification
of drug–gene interactions specifically described in cancer-
based literatures. The tool employed constructs from parsed
tree in learning interactive associations. The advent of the
CPI task in BioCreative VI set up a new target in recognizing
chemical-based protein interactions from diverse abstracts
(18). Owing to the complexity in the nature of relation
description within sentences, comprehensive feature sets
such as lexical, statistical and embedded representations
were used in ensemble kernel setting. For instance, Peng et
al. (33) followed an ensemble approach exploiting Support
Vector Machine (SVM), CNN and Recurrent Neural
Networks (RNNs) within the same model. The system used
BOW, positional indices and shortest route dependency
parsers as features within the classifiers. Results were
obtained based on majority voting from the predictions of
each classifier. Devising a layered structure for classification,
Lung et al. (21) divided the task as binary and multi-
class classification with each layer using entity pairs and
triplets as features. For multi-class classification, they use
additional classifiers including Logistic Regression, Linear
Discriminant Analysis and Naive Bayes to assign each pair
to its respective class.

Differing from most methods in the CPI task–BioCreative
VI, we developed an invariant pattern consolidation
method for CPIs, which is able to learn linguistic patterns
from biomedical literatures. We fuse this linguistic pattern-
based CPI information into dependency tree structure to
capture the sophisticated nature of CPIs. This concept
allows the LPTK to discriminate between various kinds
of relation-associated entities in literature.

Methods

The CHEMPROT corpus enlists abstracts from various
biological literatures, supplemented with pre-annotated
heterogeneous entity characterizations (i.e. chemical
compounds/drugs and genes/proteins). In light of this, we
present LPTK, which automatically extracts CPI entity
pairs from biomedical literatures. Figure 1 illustrates the
system architecture of LPTK, which encompasses three key
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Figure 1. Overview of the CPI detection method.

components: ‘candidate instance generation, invariance-
based feature optimization and linguistic pattern-aware
dependency tree construction’. Each of the components
mentioned maneuvers the entity-pair selection to reproduce
feature characteristics of the corresponding CPR type for
learning representation. The candidate instance generation
first decomposes the raw abstracts into a set of candidate
instances, each of which highlights a chemical and protein
pair representing potential interaction. Subsequently, these
entity pair and relation-word-based-tagged context frames
are utilized to capture invariant interaction context using
Algebraic Invariance-based scoring. Based on the grouped
synonymous inferences obtained by the scores, these tagged
patterns are identified as ‘linguistic patterns’. Candidate
instances are screened against these patterns to refine
the original sentence to the relevant contextual segments
represented by the pattern. Corresponding quasi-pruned
trees are used as representation feature for the Smooth
Partial Tree Kernel (SPTK)-based classifier (16, 28, 31).
Each of these stages is elucidated in detail in the following
sections.

Candidate instance generation

Candidate instance generation entails identifying sentences
referred hereafter as ‘candidate instances’ from the original
abstracts that highlight the corresponding relation verb and

an entity pair representing a potential interaction. Prior
to the instance generation, the data set is given a generic
text preprocessing with sentence detection, entity class
normalization and part-of-speech (POS) tagging. Sentence
detection tools are used to segregate the sentence bound-
aries. Each sentence is then screened for heterogeneous
entities and normalized with respective tags ‘Chemical’ or
‘GenePro’ appended with relation ID and type [e.g.
ChemicalR1T3—Chemical associated with CPR3 inter-
action (T3) and Relation Id: 1 (R1) for the designated
abstract]. The entity class-normalization module furnishes
respective preprocessed sentences. Lastly, a parallel set of
PoS-Tag labels corresponding to the sentences from the
data set is generated using the GENIA tagger (42, 43).
GENIA is preferred over the other popular PoS taggers as
it is built on biological corpus and stems each word to its
morphological root prior to tagging, which is quite handy
while recognizing key interaction terms like ‘induced’ or
‘regulated’ as verbs, opposed to the adjective forms by
other taggers.

The abstracts in the CHEMPROT corpus often have
multiple COs of heterogeneous entity pairs within a
sentence. These overlapping entity references belonging
to separate interaction pair mentions would contribute to
additional noise in linguistic pattern detection if all relation
types were to be identified from a single representation.
Such multi-relation normalized tag representation would
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Table 1. Multi-class versus same class intra-sentence distribution within CHEMPROT corpus

Data set Multi-class intra-sentence relations Same class intra-sentence relations
#Relation pairs (%) #Abstracts (%) #Relation pairs (%) #Abstracts (%)

Training 24.91 33.76 75.08 66.23
Development 25.99 32.73 74.00 67.26
Test 31.07 41.29 68.92 58.70
Average 27.33 35.92 72.66 64.07

prevent identification and consolidation of contextual
patterns into a generic invariant representation (owing
to differently annotated entity tags). Therefore, candidate
instances based on combinations of unique heterogeneous
entity pair are generated from each sentence; that is, each
instance is a derivative copy of the original sentence with
relation mention normalized heterogeneous entity-pair
combination highlighted to represent a single interaction
case at a time, while the rest entity mentions are normalized
to a respective generic symbol. Distribution of such multi-
class versus same class intra-sentence relation is given
in Table 1, highlighting that an average of 27% relation
pairs in CHEMPROT corpus exist as multi-class relation
co-occurring in a sentence. The same distribution also
highlights that ∼35% of the abstracts are covered by multi-
class intra-sentence relation scenario. An example of such
a multi-class intra-sentence relation can be shown with
sentence ‘Alprenolol (T3) and BAAM (T4) also caused
surmountable antagonism of isoprenaline (T6) responses,
and this beta 1-adrenoceptor (T17) antagonism was slowly

reversible.’ Here we can see two separate relation types—
agonist (CPR:5) and antagonists (CPR:6)—are co-located.
As shown in Figure 2, the sentence has three separate
relation mentions (two same class and one same distinct
type) spanning over four entities (i.e. three chemicals and
one gene/protein). Corresponding relation association is
also shown in the figure. To resolve the sentence into
a generic form, the normalized entity pairs are spread
over a set of three candidate instances to formulate all
potential associations per heterogeneous entity type. In
addition to the primary entity pair, we also identify and
normalize a ‘proximal verb’, i.e. the main verb nearest
to the current entity-pair combination, with annotation
‘Relation#’, where ‘#’ stands for the CPR type of the
entity pair. The candidate instance generation component
is then able to automatically pick the proximal verb based
on a comparative assessment of verb-entity distances
and verb form. Linguistically, there is predominance
in describing association relations between respective
subject–object pairs within a smaller sentential frame

Figure 2. Candidate instance level entity normalization.
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Table 2. Relation class imbalance within CHEMPROT relation data set

Relation class Training (%) Development Test Average

CPR 3 17.61 21.22 17.85 18.89
CPR 4 51.22 42.4 44.63 46.08
CPR 5 3.92 4.45 5.30 4.55
CPR 6 5.32 7.65 7.84 6.93
CPR 9 16.47 17.57 17.24 17.09
CPR 10 5.43 6.68 7.12 6.41

using non-base/inflection (http://www.ucl.ac.uk/internet-
grammar/verbs/base.htm) form verbs. Relation term
normalization isn’t performed for non-interacting entity
pairs, i.e. CPR 10. The abstract text candidate instance
label normalization is mirrored in their corresponding
PoS-tagged counterparts. PoS tag-labeled sentences are
more generic in their representation, and therefore ideal
in depicting the skeletal similarity of relations in contrast
to the actual text. Key relation entity pairs for the PoS-
tagged candidate instances are also relabeled according to
their respective sentence normalized forms.

As shown in Table 2, the training data has dispropor-
tionate size of CPI relation pairs represented by CPR 3,
CPR 4, CPR 5, CPR 6 and CPR 9 [referred to as pos-
itive (+ve) cases in our framework]. CPR 5 and CPR
6 have far fewer relation instance mentions than other
interaction relation pairs. Their proportional imbalance
(especially within training data set) leads to fewer candidate
instances representations, culminating into fewer invariant
linguistic patterns generated for their representation in sub-
sequent phases. In addition, the non-interacting chemical–
protein pairs identified as CPR 10 [referred to as negative
(−ve) case in LPTK framework] also have low contribution
size averaging to only 6.41%. CPR 10 pairs form the
negative instances in our preliminary binary classification
study for CPI detection. Therefore, to mitigate a lower
CPR 10 linguistic feature representation due to skewed
proportion of positive and negative instances, we employ
cross-group combinations to identify additional negative
instances within chemical–protein pairs that were present in
the abstract but not mentioned in the pre-identified relation
set. For the test data set, each entity-pair instance was
replicated for each of the CPR types.

Invariance-based feature optimization

In general, most prediction systems commonly use features
based on BOW, positional distance between entities, graph
routes, etc. However, these features are unable to directly
highlight inferential differences among sentences with a rep-
resentational overview. In this study, we attempt to explore
a novel linguistic pattern representation, which can capture

the summary of associative expressions from a sentence
and differentiate among various classes of associations (48).
Our idea is to harness the features/sections from text that
are immutable upon transformation. This begs the question
of what qualifies as transformation with respect to text and
what kind of properties within the text can be measured
as immutable corresponding to transformations. To begin
with, we alter our perception of viewing transformation
as dissimilarity among PoS-Tag-based frames, where all
candidate instances are hypothesized to be dissimilar to
each other at the initial stage; making one sentence by
inference a transformed state of another. Represented in
(1), this holds true in one to many association for each
candidate instance.

∀�si, �sj ∈ SCD | �si �= �sj, (1)

where �si and �sj are different candidate instances from SCD

(set of all PoS-Tag candidate instances).
Our approach for determining immutability is heavily

drawn on the concept of Algebraic Invariance showing
that two separate sentences are similar in their inferential
meaning if their invariant function score does not vary.
Extrapolating this concept, we define immutable features
using PoS-Tag frames, which appear representationally con-
sistent across data and are helpful to describe similarity
across instances. The immutability is gauged by invariant
function.

The method of invariants dates back to the works of
Boole and Cayley with significant contributions introduced
by David Hilbert (14). The theory identifies ‘invariants’ as
quantities, which continue to maintain their consistency
even upon the introduction of relative transformational
changes within the system (10). The work introduced in
this paper is an attempt to apply the same concept to the
biomedical text-mining domain and to explore alternative
and effective ways to learn exhaustive automated patterns
via an algebraic/geometric interpretation. Algebraic Invari-
ance can be described using functionals of an n-degree poly-
nomial. Invariant functional can be represented as follows:

I
(
qn0. . . . q0n

) ≡ �W × I
(
pn0. . . . p0n

)
, (2)
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where I(q) and I(p) indicate the invariant function with
qij and pij being the coefficients of n-degree representative
polynomials Q(x0..xn) and P(x0..xn), respectively. � is the
determinant of the representational polynomial undergone
transformation, and W is the invariant weight.

Any object/element can be represented in the Cartesian
system (9) using a polynomial function. For the sake of this
study, we consider a second order polynomial P

(
x, y

) =
∑

pijxiyj. Upon transformation T, the same polynomial
P

(
x, y

)
is represented by another polynomial (u, v) =

∑
qijuivj, bound in relation (u, v) = T

(
x, y

)
with origi-

nal form. To employ this concept in sentient learning, we
restructure our candidate instance as geometric represen-
tation (conic-sections) in Cartesian space, where quanti-
ties associated with its geometric form provide immutable
features describing characteristics inherent to its sentient
class. We assume a homogenous polynomial to represent
geometric form of a candidate instance as shown below
in (3), where each variable defines features related to the
‘entity-verb’ mention. We pivot our feature selection around
three key referential-groups (RfG) viz. ‘Entity1’ (chemical),
‘Relation’ (proximal verb) and ‘Entity2’ (protein/gene) to
identify CPRs.

P
(
x, y

) = p20x2 + p11x1y1 + p02y2, (3)

where variables x and y describe occurrence of paired ref-
erential group ‘Entity1∨Relation’ and ‘Entity2∨Relation’,
representing 2D feature space, respectively. Paired referen-
tial groups are referenced here in ‘OR [∨]’ association, i.e.
if either of reference group from the pair is not mentioned
in the sentence, x and y still tantamount to 1 (as ‘Entity
1’ and ‘Entity 2’ are always mentioned in each of the

candidate instance). p20, p02 and p11 are coefficients of
the representative polynomial, each of which represents the
score given to the linguistic context frame associated with
referential groups in x and y, respectively. The score is eval-
uated using PoS-Tag word frame-based joint probabilities
for each referential group in the variable. Coefficient values
vary based on the number of representative entities and
context of each instance. For example, in instances with
no annotated ‘Relation’ tag (i.e. CPR 10 or –ve instances),
only ‘Entity 1’ and ‘Entity 2’ would contribute to coefficient
values, impacting the polynomial conic representation for
CPR 10-type instances.

To discover immutable features pertaining to conic
forms based on our premise, we assume rotation ( = 0)
as the conformational transformation corresponding to
which invariance can be judged, with minimal rotation
between two conic forms signifying similarity. Using (3)
and the transformation matrix, we obtain below invariant
function (17):

I
(
qn0 . . . q0n

) ≡ I
(
pn0 . . . p0n

) =
[

p2
20 +

(
p2

11

2

)

+ p2
02

]

,

(4)

where I(q) and I(p) are the invariant functions for the
transformed instance polynomial Q(u,v) and the original
instance polynomial P(x,y), respectively. p20, p11, and p02

are the coefficients of the original polynomial function
P(x,y).

Each of the PoS-Tag candidate instances is screened for
the three/two key RfG terms (based on +ve/−ve entity pairs)
viz. normalized chemical, protein and proximal verb forms.
By using the PoS-Tag instance, n-gram word frames termed
as ‘context frame’ are selected starting at the current RfG

Figure 3. N-gram window-based ‘context-frame’ extraction.
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Figure 4. Schema for coefficient consolidation.

term index (ec), representing shifting window frame values
between 0 and n. Beginning with ec = 0, the iteration
index terminates at n, which is the maximum size of the
context frame as shown in Figure 3. Each of the n-gram
context frames is evaluated for significance using (5), which
is a modified representation of joint conditional probability.
The modified formula takes into account all variant sub-
frames succeeded and preceded by the term index ec = m
given by [0−m and n−m]. This metric is able to score each
sub-frame differently according to their information con-
tent and non-redundant representation within the bounds
of the selected context, further optimizing the significance
of context. The score is a statistical weight summary of the
given context frame over other contexts in the training data
for given RfG.

ρeck =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( ∑
P(x0...xm)∑

P(x0...xm−1)

)
×

( ∑
P(x0...xn)∑
P(x0...xm)

)

∀ (m = ec) ∩ (0 < m ≤ n) ∩ (n ∼ 7)( ∑
P(x0...xn)∑
P(xm...xn)

)
+ δv≈0.00000001000

∀ (m = ec) ∩ (xm = x0) ∩ (n ∼ 7)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (5)

where ec is the index of the RfG term in the selected frame
represented as subscript m sub-frames, n indicates the total
frame size and ρeck is the score of the context sequence
for RfG term iteration index (ec) and candidate instance k.

∑
P(x0.... xm) represents the number of times the respective

PoS-Tag frame has occurred across all of the contexts
generated from all instances. δv is the fringe value used if
a pattern is conditioned on itself. It is introduced to avoid
attributing excess weight bias to a redundant pattern, which
contributes low on information. Equation (5) is used to
generate probability scores for all n × 3-context sequences
for each instance.

As shown in Figure 4, for every RfG term (e.g. chemical,
protein and relation), joint probability cumulates the scores
ρeck for each of the n-variant context sequences. After-
wards, the paired variable-based joint probability score
(αeck) corresponding to each RfG term is determined by
clubbing respective ρeck scores. Corresponding to each of
these paired variables, polynomial form of the candidate
instance is generated using respective αeck, as the coefficient
pij defining constitutive characteristics of the polynomial.
Consequently we obtain n invariant function scores I(p)eck

using (4), for each iteration index ec corresponding to can-
didate instance Id k. I(p)k representation with the highest
score is identified as the characteristic geometric form. n
is one of the hyper-parameters in our study, which was
adjusted from 3 to 7 based on training results.

Modeled according to (3), each candidate instance
shapes as a conic section in Cartesian space based on its
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Figure 5. Polynomial-based spatial projection of text.

PoS-Tag-based polynomial representation identifying its
invariant score I(p) shown in Figure 5. The ratio of their
invariant scores is treated as the discriminative property to
determine the respective sentient interpretations as similar
or otherwise. Therefore PoS-Tag instances are ranked in the
descending order based on respective I(p)k scores and pre-

initialized parameters (� = 1.00 and W∼1) from (2). Each
candidate instance is compared with its successor and if the
ratio of scores = 1, instances are considered structurally
similar and clustered together to form a linguistic pattern
for classification. Otherwise, they are diversified into
different groups as communicated by Figure 6. � = 1.0

Figure 6. Algorithm for invariance-based linguistic pattern identification.
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Figure 7. Context identification and prospective alignment of candidate instances.

impresses that we preset the condition of minimal rotation
( = 0) between instances. Structurally similar PoS-Tag-
based contexts attain similar I(p)k scores and therefore
invariance ratio equal to 1.0 between instances. By
contrast, dissimilar PoS-Tag contexts have significantly
different I(p)k scores due to contextual variance, registering
invariance ratio �= 1.0 that signifies inferential divergence
between instances. W = 1 highlights that instances are
measured as absolute representations opposed to a factor of
their transformations. Similar invariance instance clusters
are subjected to optimization via alignment per group
to generate a triple context set-based pattern as shown
in Figure 7. Within each relation type, multiple patterns
are obtained showcasing diverse permutations of PoS
descriptions with inferentially same interaction type. The
alignment optimization is based on the highest scoring
path obtained from the substitution matrix delivered by
the recurrence relation given below:

sim
(
i, j

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
sim

(
i, j − 1

) + λ
(
_, j

) ≈ −2
〉

〈

sim
(
i − 1, j − 1

) + λ
(
i, j

) ≈
∣∣∣
∣∣

2∀i = j
− 2∀i �= j

〉

〈
sim

(
i − 1, j

) + λ (i, _) ≈ −2
〉

,

(6)

where sim(i,j) is the similarity score of the ith row and jth col-
umn of the substitution matrix. λ(i,j) indicates the penalty
function scoring insertion, deletion, match or mismatch

depending on the token comparison of respective indices.
The triplet of each pattern represents immutable linguistic
segments from each cluster of inferentially similar instances.

Linguistic pattern-aware dependency tree

construction

In this section, we introduce the candidate instance-based
linguistic pattern-aware dependency tree structure, which
is built on grammatical relation centered tree (GRCT)
(6) enhanced by pruning and decoration operations on
sentences. To facilitate comprehension, we exemplify
the process of tree construction using the sentence
‘These results indicate that U50,488H-induced down-
regulation of the hkor involves GRK-, arrestin-2-,
dynamin-, rab5- and rab7-dependent mechanisms and
receptors seem to be trafficked to lysosomes and pro-
teasomes for degradation’. Figure 8 displays the GRCT
representation of this candidate instance. It adds tags
of grammatical relations and lexical information as new
nodes in the constituency tree, emphasizing enhancement
of lexical information by adding grammatical relations and
PoS-Tags as the rightmost children. Therefore, in contrast
to shallow parsed trees, GRCT generates further layers
of relevant information for the tree kernel to determine
similarity. The PoS-Tag labels referenced in the consolidated
tree structure align more conveniently with our feature
enriching strategy of linguistic patterns, making it an
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Figure 8. GRCT representation of a candidate instance.

ideal option in this implementation. The initial parse tree
used for enhanced GRCT representation remains as the
Stanford parser (4, 24, 36). Hence generated tree structures
often comprise of lexical components, which holistically
bring grammatical coherence, but may compound as
unnecessary noise for statistical classification. We aim
to target this selective noise within the tree structure
by pruning parts of the tree using linguistic patterns
from Invariance-based feature optimization section. These
stringent context patterns are aligned with the PoS-Tag
representation of the GRCT based candidate instance. The
optimal and best scoring matched pattern is selected to
prune the GRCT representation-based candidate instance
for learning optimized features. The pruning operation
removes the leaf nodes and their preceding hierarchies that
were not contained in the pattern, thereby bringing brevity
and more discriminative power to the tree for classification.
To refine the tree structure of interacting entities from non-
interacting ones, additional decoration is undertaken by
highlighting the instances with a prefix node denoting their
respective interaction class (2, 3). These operations are
elucidated in Figure 9, depicting how most of the noisy tree
is trimmed by the selected linguistic pattern to keep only
chemicals, relation and protein-associated contexts in the
final feature. An additional CPR tag is added to distinguish
the association type and favor the tree from non-interacting
entity trees during classification e.g Class 4 (representing
CPR4-type interaction) as shown in Figure 9. During the
construction of feature trees for test case instances, we
observe an additional optimization by using an interaction

keyword-based filter. These keywords are the proximal
verbs derived from the training data sets.

SVM kernel is used to classify the tree-based features.
In SVM, a kernel function can efficiently compute the sim-
ilarity between two instances without identification of the
entire feature space. In the case of a tree kernel, features are
described using tree substructures to evaluate the number
of common tree fragments between two trees T1 and T2

through the following equation:

K (T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

� (n1, n2) , (7)

where NT1 and NT2 denote the sets of nodes in T1 and T2,
respectively. The function �(n1, n2) signifies the number of
common fragments rooted in n1 and n2 nodes. The pro-
portional variation in number of different sub-trees versus
the original parse tree size makes them computationally
unsuitable to be reproduced as feature vector.

Therefore, in order to tackle this complexity issue, mul-
tiple tree kernels have been proposed in recent years such as
syntactic tree kernel (28, 39), partial tree kernel (30, 31) and
lexical semantic kernel (37). However, the lexical part in
these tree kernels comprises of leaf nodes with exactly same
structures limiting its applications. Croce et al. (7) proposed
a much more general SPTK that can be applied to any tree
and exploit any combination of lexical similarities with
respect to the syntax enforced by the tree. Therefore, we
adopted SPTK to capture the syntactic similarity between
the high-dimensional vectors implicitly as well as partial
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Figure 9. The generated CPI tree.

lexical similarity of the trees. The Δ SPTK (n1, n2) can be
defined as follows.

If nodes n1 and n2 are leaves, then Δ SPTK (n1,
n2) = μλσ (n1, n2).

Otherwise, calculate Δ SPTK (n1, n2) recursively as

�σ (n1, n2) =
μσ (n1, n2) ×

(
λ2 + ∑

�I1,�I2,l
(�I1

)
=l

(−→
I 2

)
λ

d
(�I1

)
+d

(�I2

)

×

l
(�I1

)

∏

j=1
�σ

(
cn1

(�I1j

)
, cn2

(�I2j

)) )
,

(8)

where σ is any similarity between nodes and μ, λ∈[0,1] are
two decay factors. �I1 and �I2 are two sequences of indices
that index subsequences of children u, �I = (

i1, . . . , i|u|
)
, and

in sequences of children s, 1 ≤ i1 < · · · < i|u| ≤ |s|, i.e. such

that u = si1 . . . si|u|, and d
(�I

)
= i|u| − i1 + 1 is the distance

between the first and last child. c is one of the children
of the node n that is also indexed by

⇀

I . This provides an
advantage that tree fragments can be matched by applying
the embedding similarity σ , even if these tree fragments are
not identical but are semantically related.

Experiments

Experimental setup

Our focus in approaching this task of bio-entity relation
identification was to reinvent parts of feature representation
and study its impact as a factor in improving classification

results. Therefore, we designed our experiments with differ-
ent biological corpora aimed at the task of relation identifi-
cation. In the first set of experiments we used CHEMPROT
corpus released under BioCreative VI to identify specific
types of interaction between chemical and protein. Keeping
in context the interaction-based study, we adapted CDR
corpus from BioCreative V for the second set of experi-
ments. Lastly, we employed LPTK approach in studying
PPIs from five PPI corpora. Each of these tasks lends aid
in understanding different biological interactions, which
are systematically related to the holistic implementation of
precision medicine. Each study was evaluated on metrics
of precision, recall and F1-score (25), as well as the micro-
average used for comparing the average performance. These
measures are defined based on a contingency table of pre-
dictions for a target category Cn. Precision P(Cn), recall
R(Cn), F1-score F1(Cn) and micro-average avgμ are defined
as follows:

P (Cn) = TP (Cn)

TP (Cn) + FP (Cn)
(9)

R (Cn) = TP (Cn)

TP (Cn) + FN (Cn)
(10)

F1 (Cn) = 2 × P (Cn) × R (Cn)

P (Cn) + R (Cn)
(11)

avgμ (Cn) =
∑l

k=1 F1(Cn)k × ŵ(Cn)k
∑l

k=1 ŵ(Cn)k

, (12)
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Table 3. Distribution of the CHEMPROT data set (http://www.biocreative.org/resources/corpora/chemprot-corpus-biocreative-

vi/)

Data set #Abstract #Chemical #Gene/protein #Relation

Training 1020 13 017 12 735 4157
Development 612 8004 7563 2416
Test 800 10 810 10 018 3458

where TP(Cn) denotes the number of true positives (num-
ber of positive instances that are correctly classified), and
FP(Cn) denotes the number of false positives (FP) (instances
which are negative instances that are erroneously classified
as positives). Analogously, TN(Cn) and FN(Cn) stand for
the number of true negatives and false negatives (FN),
respectively. The F1 value is used to determine the relative
effectiveness of the compared methods. Micro-average is
gathered using weight-averaged F1 score for each evalua-
tion set, weighted with proportional data size wk per test
data set.

Data set

CHEMPROT data set. The CHEMPROT data set provided
by the CPI task–BioCreative VI for separate phases varies
in abstract size and corresponding relation measures as
depicted in Table 3. The training data comprises of 1020
abstracts with 4157 annotated relations. Corresponding
chemical and protein entity annotations are provided with
the corpus and tagged with generic IDs such as ‘Arg 1’. We
initially reported our results with the test data encompass-
ing 3399 abstracts, out of which only 800 have complete
annotations. This experiment uses toolkits from Apache
Open NLP and GENIA along with our entity-normalization
module for feature optimization. The window size for pat-
tern optimization is adjusted to n = 3. We use SPTK
classifier for this multi-class task resourcing libraries from
the KeLP (http://www.kelp-ml.org) platform (11). Due to its
multi-class nature, we only screen for positive interaction
labels (i.e. CPR3, CPR4, CPR5, CPR6 and CPR9) using
classifier. Based on the development data, prediction cut-
off for positive and negative test cases is adjusted to >0
and −0.3, respectively. Highest score from class prediction
results is use to label entity-pair interactions.

CDR data set. The CDR corpus consists of 1500 abstracts
from PubMed, which are evenly distributed among the
training, test and development data sets as shown in
Table 4. Chemical and disease annotations are marked with
respective MeSH ID as a part of the corpus, and entities
are normalized to their respective type forms. Due to the
similarity in nature of the tasks, we furnish the corpus
with the same preprocessing pipeline mentioned earlier
using Apache Open NLP (http://opennlp.sourceforge.
net/models-1.5/en-sent.bin) and GENIA (http://www.
nactem.ac.uk/tsujii/GENIA/tagger/geniatagger-3.0.2.tar.gz)
toolkit followed by invariance-based feature optimization.
The frame size for optimization is restricted to n = 5. This
task is a binary classification problem, as it needs to identify
whether respective heterogeneous entities are involved in an
interaction or not. Each test instance is duplicated for both
cases (+ve/−ve) and then evaluated against the training
model, with the higher score as determinant of the instance
label.

PPI data set. For PPI experiments, we have used five PPI
corpora (40) available in public domain detailed in Table 5.
Each of the databases is different in size, with HPRD50
having the least number of abstracts [50] and BioInfer
with the most number of abstracts [1100]. Corresponding
protein entity annotations are provided with the corpus
and tagged with generic IDs such as ‘T1’. Each corpus is
evaluated separately using the entire set in 10-fold cross
validation. The same preprocessing toolkit described in
Candidate instance generation section is used. For pattern
optimization, the window size is settled at n = 3. SPTK clas-
sifier is employed in this binary classification task resourced
from the KeLP platform. Entity pairs are labeled as inter-
acting pairs if the prediction score is within the range
of 0–1.0.

Table 4. Descriptive statistics of the CDR data set (http://tinyurl.com/pubtator-cdr)

Data set #Abstract #Chemical #Disease #Relation

Train 500 4182 5203 1038
Development 500 4244 5347 1012
Test 500 4424 5385 1066

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/bay108/5139652 by guest on 15 M

ay 2024

http://www.biocreative.org/resources/corpora/chemprot-corpus-biocreative-vi/
http://www.kelp-ml.org
http://opennlp.sourceforge.net/models-1.5/en-sent.bin
http://www.nactem.ac.uk/tsujii/GENIA/tagger/geniatagger-3.0.2.tar.gz


Page 14 of 21 Database, Vol. 2018, Article ID bay108

Table 5. Statistical distribution in five PPI corpora (http://corpora.informatik.hu-berlin.de)

Data set #Abstract #Sentence #POSITIVE

HPRD50 50 145 163
LLL 77 77 164
IEPA 486 486 335
AIMed 225 1955 1000
BioInfer 1100 1100 4834

Results

CPI task performance. Table 6 is a summary of our results on
training, development and test data set performances in
both binary and multi-class setting. Relation pairs in each
test case are based on the combination of all pre-annotated
entity pairs described for each instance of the interaction
class. We evaluate our results at two levels (binary and
multi-class) to study the efficiency offered by the linguistic
pattern-based dependency tree kernel. Our system achieves
F1-score of 47.58% on test data identifying interacting
versus non-interacting entity pairs with a recall rate of
71.80% for the ChemProt pair task. The F1-score dips to
36.54% screening for specific relation interaction within
predicted interacting classes in test set while the recall
reduces to 55.14%. Results from training, development and
test data conclude a consistent 9% drop in F1-score metric
between binary and multi-class classification.

Our multi-class classification strategy focuses on har-
nessing class deterministic features to stabilize the depen-
dency tree kernel-based classification method. Table 7 lists
the class-wise performance of our system on three of the
relation types. There is a gradation in the relative perfor-
mance among various classes with 43.43% F1-score for
CPR4. The linguistic pattern-based tree kernel recognizes
∼80% of the entity pairs correctly from CPR4, followed
by a recall of 35.83% for CPR6. This steep bias across
the category-based recognition is partly due to the imbal-
anced size of candidate instances for each of the relation
type in both the training and the test data set as eluci-
dated in Table 2. This imbalance subsequently impacts fea-
ture pattern representation generated for the corresponding

class and their subsequent cross-class optimization. This
is because the linguistic patterns are derived from a word
frame-based probabilistic model calculated on the candi-
date instances for each class separately. More diverse and
sizeable candidate instances for each class ensure com-
prehensive and robust linguistic features correspondingly.
A relatively reduced number of instances from any class
converge the size of corresponding feature patterns and may
also affect the cross-class feature optimization if pattern

representation becomes too generic. During the training
process this bias of the linguistic patterns transcends to the
tree kernel, causing the current class against the rest (OvA)
to become uneven due to the limited representation size.

Table 8 displays a comparative analysis of the system
results on the ChemProt task of BioCreative VI. Due to
the multi-class nature of the task, many teams opted to
use an ensemble system by grouping different kernels to
secure enriched feature results from each stage. For instance,
Lung et al. (21) built a three-stage model using seman-
tic information and dependency graph to develop paired
and triplet entity relation features achieving F1-score of
56.71%. Tripodi et al. (41) employed various classifiers
with the distinction of using external KBs incentivized
features. Furthermore, Wang et al. (47) used a four-layered
LSTM model consisting of feature layers comprising dis-
tances of chunked entity pairs to restructure hidden knowl-
edge. They obtained an average performance of 38.39%
with recall at 66%. As part of the deep learning method
groups, Yuskel et al. (46) used a CNN—word-embedding-
based learning model, which acquires a performance of
18.64%. In addition to the method-segmented comparison,

Table 6. Performance evaluation on the CHEMPROT corpus for different classification tasks

Data set Classification type Task type Precision (%) Recall (%) F 1 -score (%)

Training Binary Chemical–protein pair 36.90 75.79 49.64
Multi-class CPR 30.11 61.84 40.50

Development Binary Chemical–protein pair 33.69 71.68 45.84
Multi-class CPR 25.83 54.96 35.15

Test Binary Chemical–protein pair 35.58 71.80 47.58
Multi-class CPR 27.32 55.14 36.54

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/bay108/5139652 by guest on 15 M

ay 2024



Database, Vol. 2018, Article ID bay108 Page 15 of 21

Table 7. Relative variations in performance for each CPR task

Relation type Precision (%) Recall (%) F 1 -score (%)

CPR 4 29.74 80.43 43.43
CPR 6 37.10 35.83 36.45
CPR 5 19.54 48.20 27.81

we compared our performance to the registered baseline
based on entity CO, which scored 0.99 and 8.37% for
abstract and sentence-level classification, respectively. An
overall comparative assessment of the methodologies sug-
gests a mixed bag where singular kernels (including deep
learning methods) take lower spots as opposed to the
superior ensemble kernels. The layered structure of ensem-
ble methods brings in the distinction from other methods
as each sieve refines multiple classifier features to further
accuracy.

Our system was the only model in this challenge where
tree kernel-based approach was used in resolving rela-
tion interaction. Therefore, we also performed additional
experiments to study how the generated linguistic pattern
impacted tree representation classification by comparing
the overall performance of our representation model against
other popular tree representation based on grammatical
and lexical properties.

As shown in Table 9, we studied performances of various
tree representations, such as GRCT, Compositional Gram-
matical Relation Centered Tree (CGRCT), Lexical Centered
Tree (LCT), Compositional Lexical Centered Tree (CLCT)
and Lexical Only Centered Tree (LOCT) against LPTK (6,
32). Both binary and multi-class classification reported an
average jump of 12 and 6% in performance, respectively,
using LPTK representations. In addition, the training time
required in learning from LPTK representation also proved
to be consistently lower than most of the other compared
tree representations. The overall performance of non-LPTK
representations is more or less similar to each other in both

binary and multi-class tasks. An exception to this trend is
LOCT, whose performance fares relatively better, averaging
to 41.54% in binary classification. LOCT also achieved
35.42% in multi-class classification; nevertheless, it still lags
behind in relative performance achieved by LPTK model.

CID task performance. Table 10 displays the performance of
our system with an F1-score of 55.18% on the CID task.
The use of optimized features in learning the model has
a positive effect on the system ability to screen true pos-
itive associations effectively, as our method registers one
of the highest recalls reported on the data set to date.
Other popular approaches used in this task rely mostly on
external KB supported features like entity-pair provenance
and mentions in databases. The performances range from
41 to 70%, with Pons et al. (34) being the top performer
in the group. They leveraged information from the Eure-
tos and CTD repository to enhance weight bias for the
interacting entity pairs gaining ∼12% increase over their
previous performance. Xu et al. (44) enlisted SIDER, CTD
and MeSH databases to enhance the contribution of lexical
features related to known entity pairs. Based on their exper-
iments, entity and lexical features result in a performance of
50.73%, with significant improvements reported only upon
the addition of external KBs propelling F1-score to 67.16%.

In comparison to these methods, other systems strictly
implement learning without employing external KBs. One
such system by Gu et al. (13) used a multi-kernel method
attaining 61.30% on F1-score. They utilize ME and CNN
classifiers to tackle inter- and intra-sentence level entity
classification.

PPI performance. PPI is one of the vastly documented bio-
logical interactions based on scientific literatures compiled
from multiple corpora. Table 11 presents a summary of
our results by evaluating the LPTK approach on these

Table 8. Comparison of the system performances on the CPI task

Classifier strategy System Precision (%) Recall (%) F 1 -score (%)

Baseline (CO) Abstract 0.50 100 0.99
Sentence 4.37 98.03 8.37

Ensemble kernels Lung et al. (21) 63.52 51.21 56.71
Tripodi et al. (41) 33.87 40.78 37.00

RNN-LSTM Matos et al. (27) 57.38 47.22 51.81
Wang et al. (47) 26.96 66.63 38.39

CNN Yuksel et al. (46) 60.57 11.02 18.64
Tree kernel Warikoo et al. (49) 29.32 32.71 30.92

Our method 27.32 55.14 36.54
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Table 9. Comparative assessment of LPTK representation against other tree representations

Tree representation Training time (sec) Classification type Precision (%) Recall (%) F 1 -score (%)

GRCT only 10888 Binary 35.51 35.5 35.50
Multi-class 27.64 27.63 27.64

CGRCT only 6831 Binary 27.41 43.32 33.58
Multi-class 24.69 39.03 30.25

LCT only 5871 Binary 32.27 41.5 36.31
Multi-class 27.99 35.99 31.49

CLCT only 7104 Binary 46.26 22.75 30.50
Multi-class 41.09 20.21 27.09

LOCT only 605 Binary 40.06 43.14 41.54
Multi-class 34.15 36.78 35.42

LPTK 629 Binary 35.58 71.8 47.58
Multi-class 27.32 55.14 36.54

Table 10. Comparative assessment of system performances on the CID task

Method System Description Precision (%) Recall (%) F 1 -score (%)

External KB adjusted features Li et al. (23) Lexical + SVM 54.46 33.21 41.26
Pons et al. (34) Graph + SVM 73.10 67.60 70.20
Alam et al. (51) Feature + SVM 43.68 80.39 56.61
Xu et al. (44) KB + Lexical + SVM 65.80 68.60 67.20

Optimized lexical features Le et al. (52) Lexical + SVM 53.41 49.91 51.60
Gu et al. (13) CNN + ME + PP 55.70 68.10 61.30
CoSine Cosine similarity features + CTK 44.41 58.91 50.64
Our method LPTK 39.28 92.68 55.18

Table 11. Comparative assessment of our method with other state-of-the art approaches in PPI task

Method System HPRD50 LLL IEPA AIMed BioInfer avg μ

Precision (P), Recall (R), F1-score (F1) [%]

Feature-based CO P 38.9 55.9 40.8 17.8 26.6 25.2
R 100 100 100 100 100 100
F1 55.4 70.3 57.6 30.1 41.7 40.2

Multi-kernel Miwaa et al. (29) P 68.5 77.6 67.5 55.0 65.7 62.4
(CK) R 76.1 86.0 78.6 68.8 71.1 71.1

F1 70.9 80.1 71.7 60.8 68.1 66.5
Airola et al. (1) (GK) P 64.3 72.5 69.6 52.9 56.7 56.5

R 65.8 87.2 82.7 61.8 67.2 66.4
F1 63.4 76.8 75.1 56.4 61.3 61.1

Tree kernel Satre et al. (38) P 52.0 76.7 66.2 29.1 56.8 48.1
(AkanePPI) R 55.8 40.2 51.3 52.9 85.4 71.0

F1 53.8 52.8 57.8 37.5 68.2 57.3
Chang et al. (2) (PIPE) P 63.8 73.2 62.5 57.2 68.6 64.4

R 81.2 89.6 83.3 64.5 70.3 69.6
F1 71.5 80.6 71.4 60.6 66.5 66.9

Our method (LPTK) P 72.7 78.9 74.8 83.6 83.0 81.6
R 62.2 72.1 66.1 75.0 67.5 68.9
F1 67.1 75.3 70.2 79.1 74.4 74.7

five different PPI corpora. Our system performed well on
relatively bigger PPI corpora, i.e. IEPA, AIMed and BioIn-
fer with each recording the F1-score of 70.2, 79.1 and
74.4%, respectively. Significant precision and recall mea-

sures from each corpus reflect the effectiveness of linguistic
patterns in representing distinctive learning features within
PPIs. Various models have been used earlier to resolve
the PPI task. Airola et al. (1) worked on a feature-based
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approach using entity CO within sentences in dependency
graph representation. This method fared particularly well
in small sized corpus viz. LLL reaching F1-score of 70.3%.
Other popular approaches in PPI task included multi-kernel
approach where features extracted from multiple kernels
were combined to determine interactions as shown in the
works of Miwaa et al. (29). They exploited layers of syntac-
tic structures from sentences using different parsers to build
a composite kernel (CK) for PPI extraction. Their system
performed well on all five PPI corpora with Fμ = 66.5.
Using a similar approach, Airola (1) explored the subgraph
and linear order subgraph parse structures to build an all-
path GK. Results indicate that the multi-kernel methods
significantly outperformed the feature-based approaches.

Among the other kernel approaches, syntactic tree struc-
tures have also been immensely implemented in classifier
kernels for PPI extraction. One of the earliest consolidated
tree kernel approaches in PPI extraction was the AkanePPI
introduced by Satre et al. (38), which is a system featured
on shallow dependency parsers combined with semantic
features from deep syntactic parsers. This system obtained
a good F1-score of 68.2% with the BioInfer data set. Chang
et al. (2) developed PIPE, which is an interaction pattern tree
kernel approach integrating PPI-patterns with the convolu-
tion tree kernel. It utilizes features consisting of interaction
patterns unlike any of the previous methods to achieve a
competent score compared to the multi-kernel approaches.
PIPE performed well on the five PPI corpora, registering
a 66.9% Fμ. As one of the tree kernel-based approaches,
our method employed more elaborative linguistic patterns
for feature representation and exhibited improved overall
performance on all of the PPI corpora with an average
Fμ = 74.7%.

Discussion

CPR result analysis. LPTK is an entirely statistical learning-
based approach. With CPR experiments, we attempt to
explore a new method effective on association identification
by using singular tree kernel classifier enriched with lin-
guistic patterns. We have performed different experiments
and levels of comparison to inspect the contributions
of linguistic patterns in generating distinctive tree rep-
resentations. The experiments with tree representation
performance of LPTK in Table 9 showed that linguistic
pattern-based tree representations are efficient and robust.
Singular feature representations based on GRCT perform
poorly compared to LPTK in both binary and multi-
class interaction identification between chemical and
protein. LPTK employs linguistic pattern, which prunes and
decorates the GRCT representations, registering a jump
of ∼12 and 9% in binary and multi-class scenario tasks

against standalone GRCT representation, respectively. This
shift in performance within the same tree representation
over enhancements via linguistic patterns endorses the
contribution of linguistic patterns in generating effective
learning representations. The linguistic patterns generated
based on feature invariance are more effective in removing
the noisy segments from the sentences while preserving
the most relevant contexts for semantic relation analysis
as shown in Figure 9. On the contrary, the standalone
tree representations employ the entire deep parser-based
representation, which in many instances leads to generic
sub-tree representations, causing performance to drop with
partial tree kernels. LOCT performs relatively well in
this scenario, as the sub-tree structures are lexicon-centric
and do not include repetitive grammatical sub-structures.
For instance, the LOCT representation of the instance
‘Phosphatidylserine (PtdSer) is made in mammalian
cells by two PtdSer synthases, PSS1 and PSS2’ is given
by [(#be::v(#chemical::n(#chemicalpri::n))(#make::v(#cell::
n(#in::i)(#mammalian::j))(#two::c(#by::i)(#genepropri::n(#
,::,)(#genepro::n)(#and::c)(#genepro::n)))))]. Evident from
the representation, the sub-tree structures aren’t deep
enough which co-incidentally aid in classifying trees based
on lexicons directly leading to a relative increase in the
performance compared to other standalone representations.
Most of the standalone tree representations in this
experiment occur in more or less similar bandwidth of
performance except LPTK, which scores relatively better
on both F1-score and training time.

Though results from Table 6 highlight a structural weak-
ness in the patterns to effectively screen out FP within
CPI task. Based on further analysis, we attribute the low
precision in CPR task to be a combined factor of normalized
relation terms and lesser weight distributed to leaf nodes by
the dependency tree kernel. For example in instance ‘Acti-
vation of endothelial nitric oxide synthase (eNOS) results
in the production of nitric oxide (NO) that mediates the
vasorelaxing properties of endothelial cells.’ word frames
based on underlined key terms are compared and evaluated
against PoS-Tag pattern. At the classifier level, SPTK gives
weight bias to upper nodes (PoS-Tags) in the dependency
tree versus the terminal nodes (actual word). Since the
PoS-Tags label is ranked higher in the GRCT structure, it
normalizes the differentiating power that could be attained
by the relation verb word at the higher level. After further
investigation, we conclude that the problem cannot be
mitigated by rearranging the tree structure alternating text
on top, as this would result in less frequent word sub-trees
to be recognized as outliers and significantly impairing the
recall.

During our experiments with multi-class classification
in CPR task, we observed that the efficiency in identifying
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some of the relation classes was relatively lower than the
others. As shown in Table 7, the CPR6 and CPR5 interac-
tion classes were the ones that were extremely difficult to
identify. As discussed earlier, these classes have far fewer
representations in the corpus, which adversely impacts the
quality of information rendered by the corresponding lin-
guistic patterns to distinguish them from rest. Take the
example of following test candidate instance 1: ‘Astem-
izole, a potent histamine H1-receptor antagonist: effect
in allergic rhinoconjunctivitis, on antigen and histamine
induced skin weal responses and relationship to serum
levels’ and instance 2: ‘Amitriptyline is aTrkA and TrkB
receptor agonist that promotes TrkA/TrkB hetrodimeriza-
tion and has potent neurotropic activity’. The underlined
section dispenses the main context of relations in both cases,
which seem to be linguistically similar up to a certain extent.
Distinct tree representations for these sentences are refined
by possible patterns, including pattern1: [CHEMICAL DT
JJ ➔ GENE NN. ➔ RELATION. .] and pattern2: [CHEMI-
CAL VBZ DT ➔ GENE. . ➔ RELATION. .] from CPR6 and
CPR5, respectively. These patterns are analogous in certain
contexts (viz. relation-based and gene-based contexts can be
respectively aligned), and their subsequent tree representa-
tions are also comparable in length and tagged labels. This
similarity in representation leads to the misclassification
of instance1 as ‘CPR5’ by the partial tree kernel, while
it actually belongs to ‘CPR6’. These cross-category tree
representations resulted in FP and FN within CPR task,
thereby decreasing the class-wise and average performance.
In the future, we intend to enhance the optimization of
linguistic patterns with dynamic context size to reduce
outlier errors and manage hyperplane boundaries.

It is noteworthy that our method is the only tree kernel-
based approach implemented in this challenge with per-
formance comparable to some of the ensemble systems as
well as the deep learning approaches as is evident from
Table 8. We fall short against multi-feature-based layered
kernels, as our classifier features are contingent on singular
parameter of context patterns. Diversification of features
can help us accomplish a close comparison. In spite of this,
our approach is quite unique and universal. The features
generated by our invariant learning forms are human-
readable and can be reused on corpora of similar context.
These extensive patterns help us obtain a recall of 55.14%
that is higher than most of the other systems. Represen-
tational convenience of these patterns can be exhibited by
the following example. For instance, the generated pattern
[CHEMICAL RELATION DT ➔ RELATION DT NN ➔

GENE NN NN] identifies the relevant context from the
instance ‘We find that FP causes a decrease in stimulated
eosinophil secretion of LTC4 that is regulated by phospho-
lipase A2’; trying to assert that ‘FP’ causes decrease in the

‘phospholipase A2’ regulatory activity while pruning any
noisy tokens brought in by additional entities.

In contrast to abstract representational features added
in deep learning methods, linguistic patterns are explicit,
simple and robust. By maintaining the same representa-
tional features, we experimented with the nature of tree
kernels used for CPI extraction. We upgraded our kernel
to SPTK as opposed to CTK used in the BioCreative VI
submissions (49), and the kernel modification brought in
marginal performance improvement with ∼22% increase
in the recall.

CID result analysis. Based on the results displayed in Table 10
the performance of LPTK in CID task may not be at
par with KB-based methods but it comes a close sec-
ond against deep learning-based hybrid systems giving a
promising recall of 92.68%. We credit this to the extensive
automated patterns generated by LPTK that can match
a variety of linguistic contexts under different inferential
scenarios described in CID data set. For example, in the
instance ‘Famotidine associated delirium’, a simple pattern
of [CHEMICAL ➔ RELATION ➔ DISEASE] is sufficient to
identify relation, while in case of a more elaborate instance
like ‘The use of thiopentone was significantly associated
with an eight-fold-higher risk for delirium compared to
propofol (57.1 % versus 7.1 %, RR = 8.0, χ (2) = 4.256;
df = 1; 0.05 < P < 0.02).’ it requires further descriptive
linguistic pattern [DT NN IN CHEMICAL➔ IN CHEM-
ICAL RELATION ➔ DISEASE] to determine the
associative relation. These patterns vary in size and con-
textual structure owing to their consolidation upon the
training set. Our automated linguistic patterns are method-
ical in summarizing the significant inferential bits from
each sentence based upon clustered information contexts
rather than randomly aligning lexical segments against each
other. This demonstrates the true power of invariance-
based linguistic patterns and explains their ability to predict
relational inferences with greater efficacy. The comparative
analysis in Table 10 showcases our method as a novel
system, which gathers a wider spectrum of auto-generated
features to reduce the dependency of classifiers on manually
enriched features largely contingent on external KBs.

PPI result analysis. In addition to the CPI and CID tasks,
we included the experiment results of PPI extraction to
showcase the effectiveness of LPTK in recognizing other
biological entity relations like PPI. Based on the results
in Table 11, our method outperforms the previously listed
methods on at least 2 out of 5 corpora, showing promis-
ing performances of 79.1% for AIMed and 74.7% for
BioInfer, respectively. These results exhibited a significant
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boost from the previously reported best performances for
both data sets (19% for AIMed and 6% for BioInfer).
Our analysis revealed that the size and information specific
content of PPI data sets are attributive to the performance
improvement. As referenced previously, LPTK is based on
statistically significant patterns and the extensiveness of
these corpora makes it conducive to retrieve empirical pat-
terns of interaction. For instance, in the sentence ‘All these
results suggest that cofilin is a new type of actin-associated
protein.’, key terms ‘cofilin’ and ‘actin’ are related by a
type categorization. In another sentence from a different
abstract ‘We conclude that Aip1p is a cofilin-associated pro-
tein that enhances filament disassembly activity of cofilin
and restricts cofilin localization to cortical actin patches.’
another set of key terms viz. Aip1p and ‘cofili’ are again
associated by type categorization. Due to their contextual
similarity, invariant method identifies the same linguistic
pattern representation [RELATION IN PROTEINAGENT
➔ PROTEINAGENT VBZ DT ➔ PROTEINTARGET VBN
PROTEIN] for them. By contrast, in a different instance
‘The data suggests that profilin binding to actin weakens
nucleotide binding to actin by disrupting Mg(2+) coordi-
nation in the actin central cleft.’ the key terms ‘profilin’ and
‘actin’ are correlated as direct-interacting partners. Since the
contextual nature for the association is distinct from the
previous ones, the linguistic representation [RELATION IN
PROTEINAGENT ➔ PROTEINAGENT NN TO ➔ PRO-
TEINTARGET IN VBN] also differs. In essence, the method
efficiently captures the variations in sentential inferences
and reproduces them in corresponding linguistic patterns.
It should be noted that all parts of the contextual patterns
are used in refining the tree structure for the classifier kernel.

Concluding remarks

Our paper introduces a modified tree kernel-based repre-
sentation for identifying different bio-entity relations from
PubMed abstracts like chemical–protein, chemical-induced
disease and PPI. The complex multi-class intra-sentence
interactions and the class-size bias in selective corpora
made sematic relation detection especially challenging. We
attempted to establish a model, which resourced feature
optimization to enhance the tree kernel performance. The
method yields better results in binary classification, while
its recall remains competent with other methods irrespective
of the size of the classification labels. One of the promising
aspects of this method is its ability to generate exhaustive
linguistic patterns fashioned from invariant features. These
patterns are readable, explicit and reusable in tasks with
similar contexts. Therefore, we conjecture that our method
can be highly effective as a feature generation tool, which
can be applied to diverse scenarios. Besides introducing the

linguistic patterns, the proposed method also explores a
novel way of text representation by projecting text as conic
section. This opens up a new domain requiring additional
experimentation with other features of conic representa-
tion that can be potentially used with different classifiers.
Geometric figures represent a more coherent form, which
makes linguistic variations and sentential transformations
easier to understand, identify and evaluate. Despite our
best efforts, the performance of our system in multi-class
scenario stagnated. Hence, in alignment with our error
analysis, we plan to refurbish our optimization module
with additional features based on selective KBs and deep
learning-based strategies in the future. Moreover, we also
encountered some issues related to cross-class categoriza-
tion owing to the similarity in representational patterns. As
a result, to strengthen our algorithm, we plan to experi-
ment with dynamic contexts in invariance identification and
explore alternative invariant representations within text for
improved classification.

Supplementary data
Supplementary data are available at Database Online.
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