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Abstract
Inflammatory Bowel Disease (IBD) therapies are ineffective in at least 40% patients, and transcriptomic datasets have been widely 
used to reveal the pathogenesis and to identify the novel drug targets for these patients. Although public IBD transcriptomic datasets 
are available from many web-based tools/databases, due to the unstructured metadata and data description of these public datasets, 
most of these tools/databases do not allow querying datasets based on multiple keywords (e.g. colon and infliximab). Furthermore, 
few tools/databases can compare and integrate the datasets from the query results. To fill these gaps, we have developed IBDTransDB 
(https://abbviegrc.shinyapps.io/ibdtransdb/), a manually curated transcriptomic database for IBD. IBDTransDB includes a manually curated 
database with 34 transcriptomic datasets (2932 samples, 122 differential comparisons) and a query system supporting 35 keywords 
from 5 attributes (e.g. tissue and treatment). IBDTransDB also provides three modules for data analyses and integration. IBDExplore 
allows interactive visualization of differential gene list, pathway enrichment, gene signature and cell deconvolution analyses from a 
single dataset. IBDCompare supports comparisons of selected genes or pathways from multiple datasets across different conditions. 
IBDIntegrate performs meta-analysis to prioritize a list of genes/pathways based on user-selected datasets and conditions. Using two 
case studies related to infliximab treatment, we demonstrated that IBDTransDB provides a unique platform for biologists and clinicians 
to reveal IBD pathogenesis and identify the novel targets by integrating with other omics data.
Database URL: https://abbviegrc.shinyapps.io/ibdtransdb/
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Introduction
Inflammatory bowel disease (IBD) is characterized by chronic 
relapsing inflammation in the gastrointestinal tract, which 
consists of two major subtypes, ulcerative colitis (UC) and 
crohn’s disease (CD) (1). There are 4.9 million cases of 
IBD worldwide with a steady rise over the last decades (2). 
Although multiple biologic treatments have been developed to 
revolutionize the management of IBD [e.g. anti-tumor necro-
sis factor α (anti-TNFα) and anti-interleukin] (3), there is still 
a significant unmet need of new targeted therapies for at least 
40% inadequate-response patients (4).

With the rapid development of omics technologies in the 
last decades, transcriptomic datasets have been widely used 
to understand the pathogenesis of IBD. For example, Wang 
et al. (5) integrated eight tissue transcriptomic datasets from 
CD and UC patients treated with anti-TNFα therapies with 
a single-cell RNASeq dataset in UC to reveal the molecular 
and cellular mechanisms of anti-TNFα inadequate-response 
patients. Meanwhile, transcriptomic datasets can also inte-
grate with other omics data to identify the novel targets. 
For example, although novel targets with genetic evidence 
increases approval by greater than two-fold (6), because 
of lack of phamacogenetics datasets, it is difficult to iden-
tify the novel targets for inadequate-response patients by 
genetic evidence only. Thus, transcriptomic datasets with 

treatment response information can be used to prioritize 
candidate targets identified from genome-wide association
studies (GWAS).

Most of transcriptomic datasets have been deposited in the 
public databases Gene Expression Omnibus (GEO) (7) and 
ArrayExpress (AE) (8). However, it remains difficult for biol-
ogists and clinicians with limited computational knowledge 
to access and analyze these public datasets. Many web-based 
tools [e.g. GEOexplorer (9), eVITTA (10), ImaGEO (11) 
and GREIN (12)] and databases [e.g. Autoimmune Diseases 
Explorer (13), IAAA (14) and Expression Atlas (15)] have 
been developed with data visualization, differential gene iden-
tification, pathway enrichment analysis or data comparison 
functions.

However, there are several caveats that hamper the use-
fulness of these tools for scientific research (Table 1). First, 
because of the unstructured metadata and data description of 
datasets in GEO and AE, most of web-based tools/databases 
can only search the datasets by the original data ID or dis-
ease (9–11), which makes it difficult for users to find datasets 
of interest (e.g. data of certain treatment). Expression Atlas 
allows users to input multiple keywords but cannot return 
the accurate comparisons due to lack of the intersection 
search capability. For example, if searching ulcerative and 
infliximab for TNF on the Expression Atlas, ‘Crohn’s disease 
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Table 1. Features unique to IBDTransDB or shared with other tools

IBDTransDB GEOexplorer ImaGEO eVITTA GREIN
Expression 
Atlas

Autoim-
mune diseases 
explorer IAAA

Type Database Tool Tool Tool Tool Database Database Database
Database
Manually curated 

data sets
∏ X X X X X X X

Support data sets 
from GEO and AE

∏ Only GEO Only GEO Only GEO Only GEO 
RNASeq 
data

∏ Only GEO Only GEO

Data query system Intersection 
search 
based 
on five 
attributes

Query by 
GEO ID

Query by 
GEO ID

Query by 
GEO ID

Not support 
inter-
section 
search

Not support 
inter-
section 
search

Query by 
GEO ID and 
disease

X

Data visualization
Data summary ∏ ∏ X ∏ ∏ X X X
Differential gene ∏ ∏ X ∏ ∏ ∏ ∏ ∏
Gene/gene list 

exploration
∏ X X Only gene X X ∏ ∏

Signature analysis ∏ X X X X X X ∏
Enrichment analysis ∏ ∏ X ∏ ∏ X Only KEGG X
Cell deconvolution ∏ X X X X X X X
Data comparison
Gene-level ∏ X X ∏ X ∏ X X
Pathway-level ∏ X X ∏ X X X X
Data integration
Gene-level meta-

analysis
∏ X ∏ X X X ∏ X

Pathway-level 
meta-analysis

∏ X X X X X X X

vs control’ comparison is listed in the result with the highest 
log2(fold change). Second, because of the lack of an effective 
query system, most of web-based tools/databases do not sup-
port multiple dataset comparisons or perform meta-analysis 
to integrate multiple datasets, e.g. validating one target in 
multiple anti-TNFα datasets or comparing and summariz-
ing the treatment effect across different conditions. Even if 
eVITTA and ImaGEO provide some of these functions, users 
still need to manually find their datasets of interest based 
on data ID. Third, all web-based tools provide functions to 
identify the differentially expressed genes, but most of them 
do not support comparisons based on multiple conditions 
[e.g. pre-treatment responders vs after-treatment responders 
in the CD colon samples from GSE16879 dataset (16)]. 
Although some tools [e.g. GEOexplorer (9)] allow users to 
manually select samples for the comparisons, this is not prac-
tical or feasible for studies with large sample sizes. Fourth, 
none of existing tools/databases supports cell type decon-
volution analysis. Though single-cell RNASeq data provide 
an unprecedented opportunity to improve the diagnosis and 
treatment of auto-immune diseases (17), very few single-cell 
RNASeq data contain treatment and response status informa-
tion. Thus, it is difficult to identify the association between 
cell types and treatment effects using this more advanced 
technology. Cell deconvolution method (18) can address this 
problem by estimating cell fractions of bulk transcriptomic 
dataset based on single-cell RNASeq data. However, none 
of existing tools/databases enable users to perform this type
of analysis. 

To address these challenges in the transcriptome anal-
yses, we propose IBDTransDB (https://abbviegrc.shinyapps.

io/ibdtransdb/), a manually curated transcriptomic database 
for IBD. IBDTransDB has five key features: (i) a manually 
curated database with 34 high-quality transcriptomic datasets 
(2932 samples) and 122 differential gene lists based on 
comparisons from multiple conditions; (ii) a query system 
supporting 35 keywords from five attributes; (iii) IBDEx-
plore: interactive visualization of differential gene expres-
sion, pathway enrichment, gene signature and cell decon-
volution results; (iv) IBDCompare: data set comparisons 
across different conditions based on selected genes or path-
ways; (v) IBDIntegrate: meta-analysis to prioritize a list of 
genes/pathways based on user-selected data sets and com-
parisons. We also provided two case studies to demonstrate 
the utility of this unique resource in IBD pathogenesis iden-
tification and target identification by integrating with other
omics data.

Materials and methods
Dataset collection and metadata curation
A total of 34 human IBD bulk transcriptomic data matri-
ces and metadata were downloaded from GEOquery (19) 
(microarray datasets in GEO), GREIN (12) [RNA sequencing 
(RNA-Seq) datasets in GEO] or ArrayExpress (Figure 1). All 
data matrices had been quality controlled and normalized by 
the authors of the respective original publications (microar-
ray datasets) or GREIN (RNA-Seq datasets). For microarray 
datasets, probe IDs provided by each dataset were mapped to 
HUGO gene symbols by biomaRt R package (20). If multiple 
probe IDs were mapped to one HUGO gene symbol, these IDs 
were collapsed by calculating the median expression of IDs in 
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Figure 1. IBDTransDB for exploratory, comparative and integrative datasets to identify and validate the novel IBD targets. Top panel: data processing and 
meta data curation for 34 IBD bulk transcriptomics datasets and 2 single-cell RNASeq datasets. Bottom panel: three data analysis modules.

each sample. The metadata were manually curated based on 
35 keywords we defined from 5 attributes: 5 diseases/controls, 
12 treatments, 10 timepoints, 4 tissues and 4 cell types (Sup-
plementary Table S1). Some of these keywords were mapped 
to multiple ontologies [e.g. MedDRA LLT (Medical Dictio-
nary for Regulatory Activities Lowest Level Term) (21), MeSH 
terms (Medical Subject Headings) (22) and NCIT (National 
Cancer Institute Thesaurus) (23)]. Among 34 datasets, there 
are 5 CD PBMC datasets, 11 CD tissue datasets, 10 UC tissue 
datasets and 8 tissue datasets with both CD and UC patient 
samples. Furthermore, 16 datasets include treatment sam-
ples from different timepoints, and 20 datasets had control 
samples. The details of 34 datasets are listed in Supple-
mentary Table S2. Differentially expressed genes from 122 
comparisons were pre-calculated by limma R package (24) 
(Supplementary Table S3). All bulk datasets, metadata and 
comparison results were stored in an SQLite database (version 
3.37.0).

CD PBMC single-cell RNASeq data matrices and meta 
data (25) were downloaded from GEO (GSE134809) while 
UC single-cell RNASeq datasets (26) were downloaded from 
broad single cell portal (https://singlecell.broadinstitute.org/
single_cell). All single-cell datasets were processed by Seurat 
analysis pipeline (27).

Data analysis modules
IBDTransDB has three analysis modules: IBDExplore, IBD-
Compare and IBDIntegrate (Figure 1).

IBDExplore module
IBDExplore module allows accurate data selection based on 
the query from five attributes (e.g. infliximab treated CD 
datasets from colon biopsies). After a data set of interest is 
selected, five functions are available for users to explore the 
results.

(i) ‘Dataset Description’ function shows the data descrip-
tion and PCA (Principal Component Analysis) plot 
colored by the selected conditions. The P-value between 
different conditions for the selected PC can be calcu-
lated by Wilcoxon rank-sum test.

(ii) ‘DGE Viewer’ function visualizes the differentially 
expressed genes of a selected comparison in a table and 
volcano plot. Genes selected by users in the table can 
be highlighted in the volcano plot, and their expres-
sion difference between conditions is visualized with the 
boxplots. The P-value from the pre-calculated output 
with limma will be shown in the boxplot.

(iii) ‘Signature Viewer’ function calculates the mean expres-
sion of a user-input gene list in each sample as a sample-
specific signature score. Then, the signature scores of 
samples from different conditions are plotted in a box-
plot. The P-values among conditions are calculated by 
Wilcoxon rank-sum test.

(iv) ‘Enrichment Analysis’ function performs either ORA 
(over-representation analysis) or GSEA (gene set enrich-
ment analysis) analysis for a selected differential gene 
list based on the 18 databases (Supplementary Table 
S4) provided by the WebGestaltR package (28). Mul-
tiple interactive plots provided by WebGestaltR are 
imbedded in IBDExplore for visualization of enrich-
ment results (e.g. bar plot and volcano plot for result 
summary, venn diagram and GSEA enrichment plot for 
individual pathway).

(v) ‘Cell Deconvolution’ function estimates the cell frac-
tions of bulk transcriptomics data using a deep learning 
model developed and trained with CD PBMC or UC 
single-cell RNASeq dataset (25, 26). CD PBMC model 
is used to deconvolve the blood bulk samples while UC 
tissue model is used for bulk tissue samples. The detailed 
information about model generation can be found in 
Wang et al. (5) and Menden et al. (18). Briefly, 50 000 
pseudo-bulk samples were generated for the single-cell 
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Figure 2. Understanding the infliximab resistance molecular and cellular mechanisms. (A) Volcano plot of differentially expressed genes between 
non-responders and responders at baseline in GSE16879 CD colon samples. (B) Top 20 enriched Reactome pathways based on the up-regulated genes 
from (A). (C) Comparison of five representative Reactome-enriched pathways from (B) in five non-responder vs responder comparisons from four 
infliximab-treated IBD datasets. (D) Significant cell types between non-responders and responders at baseline in GSE16879 CD colon samples.

RNASeq dataset. Then, we built a four-layer deep neu-
ral network model with L1 as the loss of function and 
Rectified Linear Unit (ReLU) activation for all layers 
except the last layer and softmax activation for the last 
layer. The model was trained and validated based on 
the leave-one-out subject method. A P-value compar-
ing the cell fractions between conditions is calculated 
by Wilcoxon rank-sum test.

IBDCompare module
IBDCompare module enables easy comparison of gene/path-
way significance in multiple comparisons from the same 
datasets (e.g. gene significance between non-responder and 
responder at baseline vs at Week 6 in one infliximab-
treated dataset) or the different datasets (e.g. gene signif-
icance between non-responder and responder at baseline 
in all infliximab-treated datasets). Gene significance was 
from pre-calculated limma output, while significance of 311 
KEGG (29) and 1414 Reactome (30) pathways in 122 
comparisons was pre-calculated based on GSEA analysis 
from WebGestaltR. After inputting interesting genes/path-
ways and selecting datasets based on the five attributes, 
a comparison table is used to visualize the gene/pathway 
significance in all comparisons from each selected dataset. 
Grid of boxplots are also available to visualize the gene 
expression difference between conditions from at most six
comparisons.

IBDIntegrate module
IBDIntegrate module performs the meta-analysis for a set 
of genes/pathways based on the selected comparisons and 

ranks these genes/pathways by meta P-values. For gene-level 
meta-analysis, two-sided P-value of each gene from limma 
output is converted to two one-sided P-values based on the 
directionality of log2(fold change).

Upregulated p = {p/2 if log2(fold change) > 0
1 − p/2 otherwise

Downregulated p = 1 − upregulated p

A meta P-value for the up-regulated P-values or down-
regulated P-values of a gene in all selected comparisons is 
calculated by the R package ‘poolr’ (https://cran.r-project.
org/web/packages/poolr/index.html). The final meta P-value 
is the minimum between meta up-regulated P-value and meta 
down-regulated P-value. Adjusted meta P-value is calculated 
based on the Benjamini-Hochberg method.

For pathway-level meta-analysis, one-sided P-values of 
each KEGG or Reactome pathway is based on the P-
value and normalized enrichment score from GSEA anal-
ysis. Meta P-value calculation is the same with gene-level
meta-analysis.

Results
Two case studies related to infliximab treatment were used to 
demonstrate the unique features of IBDTransDB for revealing 
IBD pathogenesis and identifying the novel targets by integrat-
ing with other omics data.
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Figure 3. Prioritization of the candidate targets with genetic evidence for the treatment of infliximab non-responders. (A) Top three candidates with 
adjusted meta P -value <0.05 and |mean log2(fold change)|>0.58 from IBDIntegrate module. (B) Comparison of three candidates in five non-responder vs 
responder comparisons from four infliximab-treated IBD datasets. (C) Comparison of CXCR2 expression between after-treatment and baseline samples 
for responders and non-responders in GSE16879. (D) Comparison of three candidates in three non-responder vs responder comparisons from two 
vedolizumab-treated IBD datasets.

Understanding the infliximab resistance molecular 
and cellular mechanisms
Improving the understanding of molecular and cellular mech-
anisms that facilitate the differential response of anti-TNFα
therapy can accelerate discovery and development of novel 
targets for these non-responders. To test the analytical pipeline 
of IBDTransDB for mechanism identification, we reanalyzed 
the infliximab-treated GSE16879 CD colon samples (16). 
With a filter of |log2(fold change)|> 0.58 and FDR < 0.1, 
363 and 94 genes were up- and down-regulated in non-
responders compared with responders at baseline, respectively 
(Figure 2A). Based on the ‘Enrichment Analysis’ function 
in the IBDExplore module, 32 Reactome pathways were 
enriched with up-regulated genes (FDR <0.05) but no path-
way was related to down-regulated genes. Many immune 
pathways (e.g. innate immune system and neutrophil degran-
ulation) and tissue remodeling pathways (e.g. extracellular 
matrix organization and collagen formation) were found to be 
related to the non-responders, which was consistent with pre-
vious study (5) (top 20 pathways were shown in Figure 2B). To 
identify whether these pathways were also significant across 
multiple infliximab treatment datasets, four datasets were 
selected in IBDCompare based on the following keywords: 
disease keywords (‘CD’ and ‘UC’), tissue keyword (‘Colon’), 
treatment keyword (‘Infliximab’) and timepoint (‘W0’), which 
included one CD comparisons and four UC comparisons 
between non-responders and responders at baseline. Five 

representative pathways were significant in almost all five 
comparisons (P-value <0.05 and NES >1), which indicated 
that CD and UC had the similar infliximab non-response 
molecular mechanisms (Figure 2C).

Cell fractions of samples from non-responder and respon-
der baseline groups were estimated by the deep learning model 
generated by a UC single-cell RNASeq data with 51 cell types 
(26) (‘Cell deconvolution’ function in the IBDExplore mod-
ule) and nine cell types had significant difference between non-
responders and responders (P-value <0.05 and minimum of 
cell fractions in each group >0.5%, Figure 2D). Cell types with 
higher fractions in non-responders were inflammatory mono-
cytes, inflammatory fibroblasts, macrophages, post-capillary 
venules and cycling B cells, which were highly consistent with 
Reactome enrichment results and can cross-validate molec-
ular and cellular mechanisms. Together, these demonstrate 
IBDTransDB’s capacity for mechanistic identification and val-
idation.

Integrating IBD GWAS genes with transcriptomic 
datasets to prioritize candidate targets for 
infliximab non-responders
Barrio-Hernandez et al. identified 152 IBD GWAS genes based 
on L2G score >0.5 (31), which were used to perform meta-
analysis in the IBDIntegrate module. Because CD and UC 
patients shared the similar anti-TNFα non-response mech-
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anisms, the same five comparisons with the previous case 
were selected from four datasets. Under adjusted meta P-
value <0.05 and |mean log2(fold change)|>0.58, 31 genes were 
identified as candidates that had consistently higher or lower 
expression in non-responders than responders (Supplemen-
tary Table S5 and Figure 3A). Selecting these comparisons in 
the IBDCompare module can visualize the expression distri-
bution of these genes in different comparisons (Figure 3B). 
CXCR2 was the most significant one and Lyu et al. (32) sug-
gested that infliximab failure in UC patients could be treated 
by inhibiting CXCR2. Some datasets [e.g. GSE16879 (16)] 
also included the infliximab post-treatment samples that can 
be used to validate the candidates by comparing multiple con-
ditions in the ‘Signature Viewer’ function of the IBDExplore 
module. For example, CXCR2 expression was significantly 
decreased after infliximab treatment in responders but not in 
non-responders (Figure 3C).

IBDCompare module can also compare the candidates 
across different treatments. For example, vedolizumab was 
another FDA-approved treatment for IBD patients (33). How-
ever, top three candidates (CXCR2, TAGAP and TLR4) had 
no difference between non-responders and responders at base-
line for both CD and UC patients and thus may not be 
the candidate targets for the treatment of vedolizumab non-
responders (Figure 3D). Overall, this exemplifies the utility of 
IBDTransDB in prioritizing and validating a list of candidates 
with genetic evidence based on multiple datasets.

Discussion
Transcriptomic data have been widely used for IBD to reveal 
the disease mechanisms and combine with other omics data to 
identify novel targets. However, there is still a lack of a well-
curated and consistently annotated database for large-scale 
data reuse. Here, we present IBDTransDB, a manually curated 
transcriptomic database with comprehensive query system, 
interactive data visualization, comparison and integration. 
IBDTransDB has the following unique features compared 
to the existing web-based transcriptomic data visualization 
and analysis tools or databases (Table 1). First, IBDTransDB 
includes 34 manually curated bulk transcriptomic data with 
2932 samples from GEO and AE and provides the compre-
hensive data query system based on 35 keywords from 5 
attributes. IBDTransDB also includes 122 pre-calculated com-
parisons. Second, IBDExplore provides cell deconvolution 
model to estimate the cell fractions of bulk transcriptomic 
data based on single-cell RNASeq data. Integrating cell frac-
tions with treatment information can help identify the novel 
cellular targets and therapeutic strategies such as cell repro-
gramming and cell therapy. Third, IBDCompare allows users 
to compare genes/pathways across multiple datasets within or 
across datasets, which can be used for the target validation or 
indication extension. Fourth, IBDIntegrate can rank a list of 
genes/pathways by performing the meta-analysis based on the 
selected datasets and comparisons.

With comprehensive data query, visualization, comparison 
and integration across different diseases and treatments, IBD-
TransDB represents a convenient and powerful exploratory, 
comparative and integrative tool for scientists to analyze IBD 
transcriptomic datasets. One limitation of IBDTransDB is 
users cannot upload, analyze and compare their own IBD 
transcriptomic datasets in three modules. This is mainly 

because most of vocabularies in the users’ metadata may not 
be included in IBDTransDB keyword table (Supplementary 
Table S3) and it is difficult to harmonize them with the current 
database automatically. We plan to develop a data uploader 
to guide users to prepare and upload data files in the future. 
Meanwhile, we will continue to incorporate new datasets as 
well as novel functions to enhance the IBDTransDB database.

Supplementary Material
Supplementary material is available at Database online.

Author contributions
Conceptualization: JW; Interface and database development: 
VA, PS; Data curation: SY, JW, VA; Project Administration: 
JW, DC; Wrote the draft: JW, DC, PS. All authors critically 
reviewed the manuscript, provided feedback and approved the 
manuscript.

Conflict of interest
JW, DC and PS are employees of AbbVie. SY is a contractor 
for AbbVie. VA was an employee of AbbVie at the time of the 
study. The design, study conduct and financial support for this 
research were provided by AbbVie. AbbVie participated in the 
interpretation of data, review and approval of the publication.

References
1. Torres,J., Mehandru,S., Colombel,J.F. et al. (2017) Crohn’s disease. 

Lancet, 389, 1741–1755.
2. Wang,R., Li,Z., Liu,S. et al. (2023) Global, regional and national 

burden of inflammatory bowel disease in 204 countries and territo-
ries from 1990 to 2019: a systematic analysis based on the Global 
Burden of Disease Study 2019. BMJ Open., 13, e065186.

3. Cai,Z., Wang,S. and Li,J. (2021) Treatment of inflammatory 
bowel disease: a comprehensive review. Front. Med. Lausanne, 8, 
765474.

4. Awan,H., Fatima,U., Eaw,R. et al. (2023) The efficacy of currently 
licensed biologics for treatment of ulcerative colitis: a literature 
review. Cureus, 15, e37609.

5. Wang,J., Macoritto,M., Guay,H. et al. (2022) The clinical response 
of upadacitinib and risankizumab is associated with reduced 
inflammatory bowel disease anti-TNF-alpha inadequate response 
mechanisms. Inflamm. Bowel. Dis., 29, 771–782.

6. King,E.A., Davis,J.W. and Degner,J.F. (2019) Are drug targets with 
genetic support twice as likely to be approved? Revised estimates 
of the impact of genetic support for drug mechanisms on the 
probability of drug approval. PLoS Genet., 15, e1008489.

7. Edgar,R., Domrachev,M. and Lash,A.E. (2002) Gene expression 
omnibus: NCBI gene expression and hybridization array data 
repository. Nucleic Acids Res., 30, 207–210.

8. Kolesnikov,N., Hastings,E., Keays,M. et al. (2015) ArrayExpress 
update—simplifying data submissions. Nucleic Acids Res., 43, 
D1113–1116.

9. Hunt,G.P., Grassi,L., Henkin,R. et al. (2022) GEOexplorer: a web-
server for gene expression analysis and visualisation. Nucleic Acids 
Res., 50, W367–W374.

10. Cheng,X., Yan,J., Liu,Y. et al. (2021) eVITTA: a web-based visual-
ization and inference toolbox for transcriptome analysis. Nucleic 
Acids Res., 49, W207–W215.

11. Toro-Dominguez,D., Martorell-Marugan,J., Lopez-Dominguez,R. 
et al. (2019) ImaGEO: integrative gene expression meta-analysis 
from GEO database. Bioinformatics, 35, 880–882.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae026/7637954 by guest on 11 M

ay 2024

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae026#supplementary-data


Database, Vol. 00, Article ID baae026 7

12. Mahi,N.A., Najafabadi,M.F., Pilarczyk,M. et al. (2019) GREIN: 
an interactive web platform for re-analyzing GEO RNA-seq data. 
Sci. Rep., 9, 7580.

13. Martorell-Marugan,J., Lopez-Dominguez,R., Garcia-Moreno,A. 
et al. (2021) A comprehensive database for integrated anal-
ysis of omics data in autoimmune diseases. BMC Bioinf.,
22, 343.

14. Shen,Z., Fang,M., Sun,W. et al. (2022) A transcriptome atlas and 
interactive analysis platform for autoimmune disease. Database 
(Oxford), 2022, baac050.

15. Papatheodorou,I., Fonseca,N.A., Keays,M. et al. (2018) Expres-
sion Atlas: gene and protein expression across multiple studies and 
organisms. Nucleic Acids Res., 46, D246–D251.

16. Arijs,I., De Hertogh,G., Lemaire,K. et al. (2009) Mucosal gene 
expression of antimicrobial peptides in inflammatory bowel dis-
ease before and after first infliximab treatment. PLoS One, 4, 
e7984.

17. Alivernini,S., MacDonald,L., Elmesmari,A. et al. (2020) Distinct 
synovial tissue macrophage subsets regulate inflammation and 
remission in rheumatoid arthritis. Nat. Med., 26, 1295–1306.

18. Menden,K., Marouf,M., Oller,S. et al. (2020) Deep learning-based 
cell composition analysis from tissue expression profiles. Sci. Adv.,
6, eaba2619.

19. Davis,S. and Meltzer,P.S. (2007) GEOquery: a bridge between the 
Gene Expression Omnibus (GEO) and BioConductor. Bioinfor-
matics, 23, 1846–1847.

20. Durinck,S., Spellman,P.T., Birney,E. et al. (2009) Mapping identi-
fiers for the integration of genomic datasets with the R/Bioconduc-
tor package biomaRt. Nat. Protoc., 4, 1184–1191.

21. Brown,E.G. Wood,L. and Wood,S. (1999) The medical dic-
tionary for regulatory activities (MedDRA). Drug Saf., 20,
109–117.

22. Lipscomb,C.E. (2000) Medical Subject Headings (MeSH). Bull. 
Med. Libr. Assoc., 88, 265–266.

23. Fragoso,G., de Coronado,S., Haber,M. et al. (2004) Overview 
and utilization of the NCI thesaurus. Comp. Funct. Genomics, 5, 
648–654.

24. Ritchie,M.E., Phipson,B., Wu,D. et al. (2015) limma powers dif-
ferential expression analyses for RNA-sequencing and microarray 
studies. Nucleic Acids Res., 43, e47.

25. Martin,J.C., Chang,C., Boschetti,G. et al. (2019) Single-cell anal-
ysis of Crohn’s disease lesions identifies a pathogenic cellular 
module associated with resistance to anti-TNF therapy. Cell, 178, 
1493–1508 e1420.

26. Smillie,C.S., Biton,M., Ordovas-Montanes,J. et al. (2019) Intra- 
and inter-cellular rewiring of the human colon during ulcerative 
colitis. Cell, 178, 714–730 e722.

27. Stuart,T., Butler,A., Hoffman,P. et al. (2019) Comprehensive inte-
gration of single-cell data. Cell, 177, 1888–1902 e1821.

28. Liao,Y., Wang,J., Jaehnig,E.J. et al. (2019) WebGestalt 2019: gene 
set analysis toolkit with revamped UIs and APIs. Nucleic Acids 
Res., 47, W199–W205.

29. Kanehisa,M., Furumichi,M., Tanabe,M. et al. (2017) KEGG: new 
perspectives on genomes, pathways, diseases and drugs. Nucleic 
Acids Res., 45, D353–D361.

30. Fabregat,A., Jupe,S., Matthews,L. et al. (2018) The reac-
tome pathway knowledgebase. Nucleic Acids Res., 46,
D649–D655.

31. Barrio-Hernandez,I., Schwartzentruber,J., Shrivastava,A. et al. 
(2023) Network expansion of genetic associations defines a 
pleiotropy map of human cell biology. Nat. Genet., 55, 
389–398.

32. Lyu,X., Zhang,Z., Liu,X. et al. (2023) Prediction and verification 
of potential therapeutic targets for non-responders to infliximab in 
ulcerative colitis. J. Inflamm. Res., 16, 2063–2078.

33. Scribano,M.L. (2018) Vedolizumab for inflammatory bowel dis-
ease: from randomized controlled trials to real-life evidence. World 
J. Gastroenterol., 24, 2457–2467.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae026/7637954 by guest on 11 M

ay 2024



Database, 2024, 00, 1–7
DOI: https://doi.org/10.1093/database/baae026
Database tool
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae026/7637954 by guest on 11 M

ay 2024

https://creativecommons.org/licenses/by/4.0/

	IBDTransDB: a manually curated transcriptomic database for inflammatory bowel disease
	 Introduction
	 Materials and methods
	 Dataset collection and metadata curation
	 Data analysis modules
	 IBDExplore module
	 IBDCompare module
	 IBDIntegrate module

	 Results
	 Understanding the infliximab resistance molecular and cellular mechanisms
	 Integrating IBD GWAS genes with transcriptomic datasets to prioritize candidate targets for infliximab non-responders

	 Discussion
	Supplementary Material
	Author contributions
	Conflict of interest
	References


