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Abstract
‘Superbugs’ have received increasing attention from researchers, such as ESKAPE bacteria (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter  spp.), which directly led to about 
1 270 000 death cases in 2019. Recently, phage peptidoglycan hydrolases (PGHs)–derived antimicrobial peptides were proposed as new 
antibacterial agents against multidrug-resistant bacteria. However, there is still a lack of methods for mining antimicrobial peptides 
based on phages or phage PGHs. Here, by using a collection of 6809 genomes of ESKAPE isolates and corresponding phages in public 
databases, based on a unified annotation process of all the genomes, PGHs were systematically identified, from which peptides were 
mined. As a result, a total of 12 067 248 peptides with high antibacterial activities were respectively determined. A user-friendly tool was 
developed to predict the phage PGHs–derived antimicrobial peptides from customized genomes, which also allows the calculation of 
peptide phylogeny, physicochemical properties, and secondary structure. Finally, a user-friendly and intuitive database, ESKtides (http://
www.phageonehealth.cn:9000/ESKtides), was designed for data browsing, searching and downloading, which provides a rich peptide 
library based on ESKAPE prophages and phages.

Database URL: 10.1093/database/baae022

Received 19 September 2023; Revised 6 December 2023; Accepted 6 March 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Over the past decades, bacterial antimicrobial resistance has 
emerged as a significant global threat to human health. It was 
estimated that by 2050, antimicrobial resistance will cause 10 
million deaths each year and an estimated direct economic 
loss of three trillion pounds (1). As early as 2017, WHO 
identified a list of priority multidrug-resistant pathogens, 
highlighting multidrug-resistant ESKAPE bacteria (Entero-
coccus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa and 
Enterobacter spp.) as a serious worldwide medical concern 
(2). In 2019, global ESKAPE infection caused about 929 000 
death cases (3). Researchers have proposed the spectrum 

of drugs faced with the resistance by ESKAPE pathogens, 
including oxazolidinones, lipopeptides, macrolides, fluoro-
quinolones, tetracyclines, beta-lactams and beta-lactam-beta-
lactamase inhibitor combinations, which cover >90% of the 
types of antibiotics (4). With traditional antibiotic thera-
pies becoming increasingly ineffective, there is an urgent 
need for alternative therapeutic agents to combat resistant
pathogens.

Antimicrobial peptides (AMPs) have been reported to 
be effective for microorganisms with resistance to conven-
tional antibiotics (5). Currently, the antibacterial mechanisms 
of AMPs are divided into two aspects: cell membrane–
targeting mechanism that uses hydrophobic action to destroy 
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Figure 1. Workflow for ESKAPE-derived peptides mining. The main steps include annotation of phages and prophages, de-redundancy, search PGH 
structure and scoring of antibacterial activity.

cell membranes and forms holes to cause cell death (6) 
and intracellular-targeting mechanisms that destroy cells by 
interfering with their normal metabolism (7–9). According to 
previous studies, most natural AMPs are derived from ani-
mals, plants, bacteria, fungi, and protozoa, and AMPs derived 
from virus are rarely reported.

As a kind of virus, phages are abundant and widely dis-
tributed in the environment (there are 1031 phages in nature). 
As bacterial hunters, phages can specifically lyse bacteria via 
phage peptidoglycan hydrolases (PGHs) with strong antibac-
terial activity, providing novel strategies against multidrug-
resistant bacteria (10–12). Recently, Thandar et al. analyzed 
the secondary structure of phage lysin PlyF307, a kind of 
PGHs, and confirmed the in vitro antibacterial activity of 
the C-terminal peptide P307, which possesses a dual alpha-
helical structure (13). This finding suggests the potential for 
AMP discovery through PGHs. Furthermore, two indepen-
dent studies have demonstrated that deep learning model can 
be used to predict the activity of AMPs (14, 15) offering 
the opportunity to expand the existing AMP dataset by min-
ing phage-derived AMPs based on PGHs and assessing their 
activity using deep learning models. With advancements in 
high-throughput culturomics and genome sequencing tech-
nologies, an increasing number of phage genomes are being 
reported. However, comprehensive genome-wide mining tech-
niques for phage or prophage AMPs and dedicated databases 
for such AMPs are currently lacking.

In this study, we used ESKAPE genome and corresponding 
phage genome data were used to develop a new computational 
pipeline for systematic mining of AMPs based on the PGHs 
detected from ESKAPE isolates and their phages (for ESKAPE 

phage-derived peptides, https://github.com/hzaurzli/phatides_
prediction). The antimicrobial activity, the physiochemical 
properties and secondary structure of ESKAPE phage-derived 
AMPs were also evaluated in our database. To facilitate the 
accessibility and analysis of ESKAPE phage-derived AMPs, a 
ESKtides database was constructed, which can be accessed at 
http://www.phageonehealth.cn:9000/ESKtides. The database 
comprises AMPs mined based on PGHs, which are generally 
absent in the existing databases related to peptides.

Materials and methods
The database was established through data integration, phage 
and prophage genome annotation, PGHs identification and 
peptides mining (Figure 1).

Data collection for the genomes of ESKAPE isolates 
and their phages
The genome data were downloaded (including ESKAPE 
strains and their phages) from four widely used databases 
on January 2023, including Microbe Versus Phage (MVP) 
(16), PhagesDB (17), Virus-Host Database (VHDB) (18) and 
National Center for Biotechnology Information (NCBI) (19) 
and merged these genomes to construct our dataset in this 
study. The data in these four databases were subjected to 
the following processing. First, genome analysis of ESKAPE 
strains was conducted to isolate prophage elements, concur-
rently with the elimination of any incomplete genomic assem-
blies from the NCBI database, including contigs and scaffolds, 
to refine the prophage extraction accuracy. Second, for the 
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Figure 2. Overall design of ESKtides. ESKtides curated metadata information from NCBI, MVP, VHDB and PhagesDB, and the data in these four 
databases are subjected to the following procedures. First, for ESKAPE strains, we filter incomplete assembly to ensure the accuracy of mining. 
Second, for ESKAPE phages, we downloaded the phage genome corresponding to their strains (phages are isolated from corresponding strains) from 
MVP, PhagesDB, VHDB and marked as corresponding phages. All raw data were processed by using a standard pipeline. ESKtides includes ‘Browse’, 
‘Search’, ‘Download’ and ‘Submission’.

ESKAPE phage genomes, the genomes of the phages with 
ESKAPE strains as hosts were collected from MVP, PhagesDB, 
and VHDB, while the phages from metagenomic data were 
omitted. Third, CheckM (20) and CheckV (21) were used to 
evaluate genome integrity and filter the data in which integrity 
is <90% in order to avoid artificial differences resulting from 
different annotation pipelines. The genome annotation circos 
was generated by CGView.js (Figure 2).

Obtaining peptides from ESKAPE phages and 
prophages
The initial step in the extraction of ESKAPE phage-derived 
AMPs is to obtain the peptides from the predicted PGHs 
within ESKAPE phage and prophage genome sequence. For 
prophage, each corresponding strain genome open reading 
frame (ORFs) were done by using Prokka 1.14.6 (22). Phispy 
4.2.21 (23) was used to discover prophages based on anno-
tations, and then prophages coordinate was extracted by 
custom scripts. To reannotated prophage genome, PHAN-
OTATE (24) was performed to annotate prophage ORFs 
and protein sequences were obtained from ORFs. CD-hit 
(25) was used to eliminate redundancy and remove pro-
teins in which molecular weight is >40 kDa. Additionally, 
proteins with previously reported PGH domains were iden-
tified through mapping against a database of PGHs com-
piled from published literature using ‘hmmsearch’ (26). Next, 
transmembrane proteins are removed which is predicted by 

DeepTMHMM (27). Finally, we obtain all putative PGHs. To 
derive peptides from PGHs, sequences ranging in length from 
6 to 50 amino acids (aa) were extracted from PGHs using a 
sliding window cutting method. For phages, Prodigal (28) was 
performed to annotate phage ORFs, protein sequences were 
obtained from ORFs directly and the remaining steps are same
as strains.

Activity evaluation and secondary structure 
prediction
A deep learning model was used to assess the activity of 
the peptides obtained from PGHs. Under the deep learning 
frame, the basic model was structured with convolutional 
neural networks and long short-term memory layers, which 
has been used in the research of Ma et al. (15). The model 
was established as follows: (i) a non-AMP dataset was col-
lected from UniProt (http://www.uniprot.org), while an AMP 
dataset was collected from four publicly available sources 
(Database of Anti-Microbial peptides, Antimicrobial Peptide 
Database, APD; Collection of Anti-Microbial Peptides, and 
A Database Linking Antimicrobial Peptides). The data were 
divided into training and testing sets at an 8:2 ratio. (ii) Key 
layers and parameters were configured, including an embed-
ding layer with an input dimension of 21, an input length of 
300 and an output dimension of 128; a 1D convolution layer 
with 64 convolution kernels, 16 filter length and ReLU acti-
vation function; a 1D max pooling layer with a pool size of 5; 
a long short-term memory layer with 100 units; and a dense 
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Table 1. Comparison between ESKtides and relevant databases

Database Data source Activity score

Physical and 
chemical 
properties

Sequence 
structure Mining by users Peptides design

ESKtides Phages and prophages Yes Yes Yes Yes No
APD Archaea, protists, 

fungi, plants and 
animals

No No No No Yes

APD 2.0 Archaea, protists, 
fungi, plants and 
animals

No No No No Yes

APD 3.0 Archaea, protists, 
fungi, plants and 
animals

No Yes No No Yes

DRAMP Bacteriocins, clinical, 
patent, plant and 
stapled AMPs

Yes No No No No

DRAMP 2.0 Bacteriocins, clinical, 
patent, plant and 
stapled AMPs

Yes No No No No

DRAMP 3.0 Bacteriocins, clinical, 
patent, plant and 
stapled AMPs

Yes No No No No

DBAASP Not clear No Yes No No No
CAMPR R1–R4 Not clear Yes No No No No

layer with one unit and sigmoid activation function. (iii) The 
training set was used to train the model built with the Keras 
framework (version 2.2.4, https://www.keras.io). Secondary 
structure predictions were calculated using SCRATCH-1D 1.1 
(29). 

Evaluate the physiochemical properties of the 
peptide
We also provide a platform for users to calcu-
late physicochemical property by using R package ‘Peptides’
(https://www.rdocumentation.org/packages/Peptides/versions
/2.4.4) and Biopython (version 1.79). Protein length, molecu-
lar weight, instability, hydrophobicity, hydrophobic moment, 
aliphatic, pI and charge were included in our platform 
by using different functions: ‘lengthpep()’, ‘mw()’, ‘instaIn-
dex()’, ‘hydrophobicity()’, ‘hmoment()’, ‘aIndex()’, ‘pI()’ and 
‘charge()’ in R package Peptides. Protein gravy is calculated 
by function ‘gravy()’ in Biopython.

Results
Data summary
Several peptide-related databases have been reported in recent 
studies, and their differences from ESKtides are summarized 
in Table 1. APD3 is an AMP database sourced from archaea, 
protists, fungi, plants and animals (30). 3.0 Data Repository 
of Antimicrobial Peptides (DRAMP) provides information of 
AMPs from clinical, general and patent sources as well as 
AMPs mined from bacteriocins and plants (31). DBAASP (32) 
and R1–R4 Collection of Anti-Microbial Peptides (CAMPR) 
(33–36) comprise manually collected and experimentally ver-
ified high-quality peptides, resulting in a more limited dataset 
compared to those derived from high-throughput methods. 
Notably, ESKtides stands as the inaugural extensive phage-
derived AMP database.

Pipeline and ESKAPE phage-derived peptides of 
ESKtides
The mining approach of ESKtides has been described in the 
Methods and Material section, with the technical details and 
schematic shown in Figure 1. In general, the process com-
prises three key stages: (1) annotating of phage and prophage 
genomes; (2) identifying PGHs based on their possession of 
protein functional domains from previously reported PGHs, 
followed by the extraction of peptides from the predicted 
PGHs; (3) evaluating the antibacterial activity of the peptides 
using a deep learning method.

ESKtides comprises a total of 12 067 248 AMPs, selected 
based on the predicted antibacterial activity (the cutoff 
value = 0.9) from a pool of 22 091 402 peptides abstracted 
from 185 177 PGHs identified in the prophages of 5630 
ESKAPE isolates and 1179 ESKAPE phages. The efficiency 
of AMP mining (measured as the number of AMPs per 
genome) varies significantly between different species. For 
ESKAPE isolates, E. cloacae exhibits the highest average num-
ber of AMPs per genome (24 579 peptides per genome), while 
S. aureus presents the lowest (305 peptides per genome). 
For ESKAPE phages, E. faecium phages have the maxi-
mum efficiency (1315 peptides per genome) and P. aerugi-
nosa phages have the minimum efficiency (850 peptides per
genome).

Database access
A user-friendly website was designed for the database, with 
five main modules, including ‘Browse Genome’, ‘Browse Pep-
tides’, ‘Analysis’, ‘Statistic’ and ‘Download’ (Figure 3A). In 
each table, search boxes are designed for users to perform 
quick search with two patterns: exact search and fuzzy search. 
ESKAPE phage-derived peptide pipeline is shown on the home 
page for users to better understand the whole mining process.

On the page of ‘Browse Genome’, users can browse 
ESKAPE profiles of different strains and phages on the top 
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Figure 3. Overview of ESKtides. (A) Main functions of ESKtides, including the ‘Browse Genome’, ‘Browse Peptides’, ‘Analysis’, ‘Statistic’, ‘Download’ 
and ‘Help’ modules. (B) A table of queried strains or phages information in the ‘Browse Genome’ module. (C) A table of queried ESKAPE-derived 
peptides information in the ‘Browse Peptides’ module. (D) A graph of queried PGH distribution in the ‘Browse Genome’ module. (E) The annotation 
circos graph of queried strain. (F) Submit peptides sequences to score the bactericidal activity of the peptide. (G) Calculate peptides sequences 
physicochemical property.

box, search for genome information by accession, strain, 
genome length, genome level and ORF number on the center 
table, and browse genome similarity network on the bottom 

graph, where each point represents one genome. For example, 
if users attempt to query genome annotation, they only need 
to click ‘detail’ button to access the annotation page, which 

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae022/7635281 by guest on 19 M

ay 2024



6 Database , Vol. 00, Article ID baae022

Table 2. Usage example, analysis of 10 peptides, which are experimentally verified

Source Peptides
Experimental 
bactericidal activity

Activity score
(ESKtides) Activity score (CAMPR4) Reference

P. aeruginosa PGHs (D3 ORF31) X1 Low 0.029 0.81 (RF) 0.69 (SVM) (38)
P. aeruginosa PGHs (D3 ORF31) X2 Low 0.016 0.85 (RF) 0.85 (SVM) (38)
P. aeruginosa PGHs (D3 ORF31) X3 Low 0.016 0.84(RF) 0.82(SVM) (38)
P. aeruginosa PGHs (D3 ORF31) X4 Low 0.26 0.53 (RF) 0.30 (SVM) (38)
P. aeruginosa PGHs (PlyPa01) PaP1-1 Low 0.382 0.64 (RF) 0.50 (SVM) (37)
P. aeruginosa PGHs (PlyPa01) PaP1-2 Low 0.757 0.82 (RF) 0.62 (SVM) (37)
A. baumannii PGHs (PlyF307) P307 Good 0.999 0.94 (RF) 0.96 (SVM) (39)
A. baumannii PGHs (LysP53) P103 Low 0.005 0.29 (RF) 0.07 (SVM) (13)
A. baumannii PGHs (LysP53) P104 Good 0.029 0.06 (RF) 0.01 (SVM) (13)
Mycobacterium PGHs AK15 Excellent 0.937 0.97 (RF) 1.00 (SVM) (40)

Abbreviations: RF: Random Forests; SVM: Support Vector Machines.

is on the center table. The searching results will be displayed 
in a table containing ‘Locus tag’, sequence type, ‘CDS length’, 
‘gene name’, ‘EC number’, ‘COG id’ and ‘product function’ 
(Figure 3B). In addition, users can browse genome annotation 
circos plot on the top and can also download the annotated 
proteins fasta files by clicking ‘Download’ (Supplementary 
Figure.S4).

On the page of ‘Browse Peptides’, users can view the 
ESKAPE phage-derived peptides from different ESKAPE 
strains or phages and can also search for peptide information 
by ‘ORFs ID’, ‘Sequence’, ‘peptides length’, ‘peptides activity’ 
and ‘activity level’. The antibacterial activity value is within 
the range of 0–1. Two levels are set for activities: if the peptide 
activity is higher than 0.9, it is defined as ‘High’; if the peptide 
activity is between 0.5 and 0.9, it is defined as ‘Medium’; oth-
erwise, the peptides are not included in our dataset. Users can 
select ESKAPE phage-derived peptides of interest and click the 
‘Seq’ button to download the information (Figure 3C). Group 
information includes ‘ORFs ID’, ‘Sequence’, peptide length, 
peptide activity and activity level. Users can also download 
the information of all ESKAPE phage-derived peptides on the 
‘Download’ page in corresponding group datasets that users 
are interested in.

On the page of ‘Analysis’, in ‘Peptides activity Prediction’, 
users can predict the antibacterial activity of peptides by using 
the deep learning model. Users can start a new calculation 
after clicking the ‘submit’ button and click the ‘example’ but-
ton to show the example format. The ‘clear’ button can be 
used to erase the previous record. In ‘Peptides Phylogenetic 
tree’, users can show the phylogenetic relationship of related 
peptides. Users only need to upload a tree file (newick format 
or json format) and adopt different styles according to their 
needs. We also provide a calculation platform for the physic-
ochemical properties of peptides, which is used in the same 
way as ‘Peptides activity Prediction’. The secondary struc-
ture can also be predicted in ‘Peptides secondary structure’ by 
using SCRATCH-1D_1.1. All operations can be performed in 
batches (Supplementary Figure S5). 

All analysis results can be downloaded as comma-
separated values (CSV) files for each group on the ‘Download’ 
page, and all search and calculation results can be down-
loaded as CSV and Excel files for customized analysis by 
clicking the corresponding button on the top right of almost 
all tables.

Users can submit relevant data by sending us a data infor-
mation table via email. Currently, ESKtides can accept open 

access genome fasta files and assembly fasta files related to 
ESKAPE. The submitted data will be added to ESKtides after 
curation and analysis as described in Materials and Meth-
ods section. We also provide the mining pipeline for ESKAPE 
phage-derived peptides. The software is available on GitHub: 
https://github.com/hzaurzli/phatides_prediction.

Usage example
A case study was conducted to estimate the performance 
of ESKtides and then predicted the reported peptides based 
on PGHs. The AMP sequences recorded in relevant papers 
that confirmed by biological experiments before 1 January 
2023 were collected. Then, the peptide activity was pre-
dicted by ESKtides and compared the prediction score with 
the results of biological experiments (Table 2). These pre-
dicted peptide activities, sorted by prediction scores, are listed 
in Table 2. Comparative analysis with CAMPR4 showcased 
advantages in our platform, particularly in PGH-based pep-
tide performance prediction. For example, the studies (37, 
38) described that P. aeruginosa peptides (X1–X4 and PaP1-
1 from PGHs) show low antibacterial activity in experiment, 
but CAMPR4 was determined to be high activity, our platform 
was determined the low activity, which is more fitted with 
experiment result. This case study underscores our platform’s 
efficacy in peptide identification and streamlining candidates 
for subsequent biological experiments.

Discussion
In recent years, several peptide-related databases such as 
DRAMP 2.0 (39), DRAMP 3.0 (31), APD3 (30) and CAMPR 
R1–R4 (33–36) have been established. However, there has 
been limited research on mining AMPs from phages. In 
this study, ESKtides was established, offering comprehen-
sive insights into AMPs derived from ESKAPE prophages and 
phages. To the best of our knowledge, ESKtides is the first 
comprehensive database of ESKAPE phage-derived AMPs, 
which may expand the knowledge of AMP source and PGH 
distribution in ESKAPE isolates and phages. Remarkably, 
the database provides useful tools such as ‘Peptides Activ-
ity Prediction’ and ‘Peptides Phylogenetic Tree’, alongside the 
computation of physicochemical properties, to assist users in 
selecting more suitable peptides. In this version of ESKtides, a 
deep learning model was utilized to predict the antibacterial 
activity of peptides. In comparison to CAMPR4, ESKtides, 
based on the deep learning model in Ma et al. (15), has more 
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advantages in predicting peptides mined based on PGHs. Pre-
vious studies (37, 38) described that P. aeruginosa peptides 
(X1–X4 and PaP1-1 from PGHs) showed low antibacterial 
activity in experiments, in contrast to the high activity pre-
dicted by CAMPR4. ESKtides showed more closely with 
experimental results by indicating low activity for these pep-
tides. These results demonstrate that ESKtides performs well 
in identifying peptides and narrowing the scope of candidates 
for further biological experiments. However, because only 
using the deep learning model to predict the peptide activ-
ity is likely to introduce some false positives, the database 
probably incorporates some ESKAPE phage-derived peptides 
that are less active in the real situation. Therefore, we intend 
to conduct further validation experiments to reduce the false 
positive rate. ESKtides promises to be a valuable resource for 
advancing the understanding of AMPs.

Database architecture
The ESKtides website runs on an Apache Web server (https://
apache.org/). The database was developed by using sqlite3 
(https://www.sqlite.org/index.html). Flask 2.0.3 (https://flask.
net.cn/) was used for server-side scripting. The ESKtides web 
interface was built by using Datatables (https://datatables.
net/) and JQuery v2.1.1 (http://jquery.com). ECharts (http://
echarts.baidu.com) was used as a graphical visualization 
framework and R (https://www.r-project.org/) for graph 
drawing. We recommend using the latest versions of Firefox 
and Google Chrome for the best experience.

Supplementary Material
Supplementary material is available at Database online.

Data availability
ESKtides is freely available to the public without registration 
or login requirements (http://www.phageonehealth.cn:9000/
ESKtides).

Conflict of interest
The authors have declared no competing interests.

Acknowledgements
This work was supported by the National Key Research 
and Development Program of China (2023YFD1801000), the 
National Natural Science Foundation of China (32322082, 
32072323 and 32073022), HZAU-AGIS Cooperation Fund 
(SZYJY2022018) and Training Program of Distinguished 
Agricultural Researcher supported by the Ministry of Agri-
culture and Rural Affairs (13210333). This work was also 
supported by the National Innovation and Entrepreneurship 
Training Program for Undergraduates (S202310504232), the 
Natural Science Foundation of Hubei Province (2023AFA111 
and 2022CFB659) and the Young Top-notch Talent Cultiva-
tion Program of Hubei Province.

References
1. O’Neill,J. (2016) Tackling drug-resistant infections globally: final 

report and recommendations. Government of the United Kingdom, 
2018.

2. Mancuso,G., Midiri,A., Gerace,E. et al. (2021) Bacterial antibiotic 
resistance: the most critical pathogens. Pathogens, 10, 1310.

3. Murray,C.J., Ikuta,K.S. and Sharara,F. (2022) Global burden of 
bacterial antimicrobial resistance in 2019: a systematic analysis. 
Lancet, 399, 629–655.

4. Kalpana,S., Lin,W.Y., Wang,Y.C. et al. (2023) Antibiotic resis-
tance diagnosis in ESKAPE pathogens—a review on proteomic 
perspective. Diagnostics, 13, 1014.

5. Zhang,Q.Y., Yan,Z.B., Meng,Y.M. et al. (2021) Antimicrobial pep-
tides: mechanism of action, activity and clinical potential. Mil. 
Med. Res., 8, 48.

6. Koehbach,J. and Craik,D.J. (2019) The vast structural diversity of 
antimicrobial peptides. Trends Pharmacol. Sci., 40, 517528.

7. Cardoso,M.H., Meneguetti,B.T., Costa,B.O. et al. (2019) Non-
lytic antibacterial peptides that translocate through bacterial mem-
branes to act on intracellular targets. Int. J. Mol. Sci., 20, 4877.

8. Greve,J.M. and Cowan,J.A. (2022) Activity and synergy of Cu-
ATCUN antimicrobial peptides. Int. J. Mol. Sci., 23, 14151.

9. Huang,J., Xu,Y., Xue,Y. et al. (2023) Identification of potent 
antimicrobial peptides via a machine-learning pipeline that mines 
the entire space of peptide sequences. Nat. Biomed. Eng., 7, 
797–810.

10. Schmelcher,M., Donovan,D.M. and Loessner,M.J. (2012) Bacte-
riophage endolysins as novel antimicrobials. Future Microbiol., 7, 
1147–1171.

11. Yan,J., Mao,J. and Xie,J. (2014) Bacteriophage polysaccha-
ride depolymerases and biomedical applications. BioDrugs, 28, 
265–274.

12. Rodríguez-Rubio,L., Martínez,B., Donovan,D.M. et al. (2013) 
Bacteriophage virion-associated peptidoglycan hydrolases: poten-
tial new enzybiotics. Crit. Rev. Microbiol., 39, 427–434.

13. Thandar,M., Lood,R., Winer,B.Y. et al. (2016) Novel engineered 
peptides of a phage lysin as effective antimicrobials against 
multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents 
Chemother., 60, 2671–2679.

14. Yan,J., Bhadra,P., Li,A. et al. (2020) Deep-AmPEP30: improve 
short antimicrobial peptides prediction with deep learning. Mol. 
Ther. Nucleic Acids, 20, 882–894.

15. Ma,Y., Guo,Z., Xia,B. et al. (2022) Identification of antimicrobial 
peptides from the human gut microbiome using deep learning. Nat. 
Biotechnol., 40, 921–931.

16. Gao,N.L., Zhang,C., Zhang,Z. et al. (2018) MVP: a microbe-
phage interaction database. Nucleic Acids Res., 46, D700–D707.

17. Russell,D.A., Hatfull,G.F. and Wren,J. (2017) PhagesDB: the acti-
nobacteriophage database. Bioinformatics, 33, 784–786.

18. Mihara,T., Nishimura,Y., Shimizu,Y. et al. (2016) Linking virus 
genomes with host taxonomy. Viruses, 8, 66.

19. Pruitt,K.D., Tatusova,T., Brown,G.R. et al. (2012) NCBI Refer-
ence Sequences (RefSeq): current status, new features and genome 
annotation policy. Nucleic Acids Res., 40, D130–5.

20. Parks,D.H., Imelfort,M., Skennerton,C.T. et al. (2015) CheckM: 
assessing the quality of microbial genomes recovered from isolates, 
single cells, and metagenomes. Genome Res., 25, 1043–1055.

21. Nayfach,S., Camargo,A.P., Schulz,F. et al. (2021) CheckV assesses 
the quality and completeness of metagenome-assembled viral 
genomes. Nat. Biotechnol., 39, 578–585.

22. Seemann,T. (2014) Prokka: rapid prokaryotic genome annotation. 
Bioinformatics, 30, 2068–2069.

23. Akhter,S., Aziz,R.K. and Edwards,R.A. (2012) PhiSpy: a novel 
algorithm for finding prophages in bacterial genomes that com-
bines similarity- and composition-based strategies. Nucleic Acids 
Res., 40, e126.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae022/7635281 by guest on 19 M

ay 2024

https://apache.org/
https://apache.org/
https://www.sqlite.org/index.html
https://flask.net.cn/
https://flask.net.cn/
https://datatables.net/
https://datatables.net/
http://jquery.com
http://echarts.baidu.com
http://echarts.baidu.com
https://www.r-project.org/
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae022#supplementary-data
http://www.phageonehealth.cn:9000/ESKtides
http://www.phageonehealth.cn:9000/ESKtides


8 Database , Vol. 00, Article ID baae022

24. Mcnair,K., Zhou,C., Dinsdale,E.A. et al. (2019) PHANOTATE: a 
novel approach to gene identification in phage genomes. Bioinfor-
matics, 35, 4537–4542.

25. Li,W. and Godzik,A. (2006) Cd-hit: a fast program for cluster-
ing and comparing large sets of protein or nucleotide sequences. 
Bioinformatics, 22, 1658–1659.

26. Potter,S.C., Luciani,A., Eddy,S.R. et al. (2018) HMMER 
web server: 2018 update. Nucleic Acids Res., 46,
W200–W204.

27. Hallgren,J., Tsirigos,K.D., Pedersen,M.D. et al. (2022) 
DeepTMHMM predicts alpha and beta transmembrane 
proteins using deep neural networks. BioRxiv, 2022.04.08.
487609.

28. Hyatt,D., Chen,G.L., Locascio,P.F. et al. (2010) Prodigal: prokary-
otic gene recognition and translation initiation site identification. 
BMC Bioinf., 11, 119.

29. Magnan,C.N. and Baldi,P. (2014) SSpro/ACCpro 5: almost per-
fect prediction of protein secondary structure and relative sol-
vent accessibility using profiles, machine learning and structural 
similarity. Bioinformatics, 30, 25922597.

30. Wang,G., Li,X. and Wang,Z. (2016) APD3: the antimicrobial pep-
tide database as a tool for research and education. Nucleic Acids 
Res., 44, D1087–D1093.

31. Shi,G., Kang,X., Dong,F. et al. (2022) DRAMP 3.0: an enhanced 
comprehensive data repository of antimicrobial peptides. Nucleic 
Acids Res., 50, D488–D496.

32. Pirtskhalava,M., Amstrong,A.A., Grigolava,M. et al. (2021) 
DBAASP v3: database of antimicrobial/cytotoxic activity and 

structure of peptides as a resource for development of new ther-
apeutics. Nucleic Acids Res., 49, D288–D297.

33. Thomas,S., Karnik,S., Barai,R.S. et al. (2010) CAMP: a useful 
resource for research on antimicrobial peptides. Nucleic Acids 
Res., 38, D774–D780.

34. Waghu,F.H., Gopi,L., Barai,R.S. et al. (2014) CAMP: collection of 
sequences and structures of antimicrobial peptides. Nucleic Acids 
Res., 42, D1154–D1158.

35. Waghu,F.H., Barai,R.S., Gurung,P. et al. (2016) CAMPR3: a 
database on sequences, structures and signatures of antimicrobial 
peptides. Nucleic Acids Res., 44, D1094–D1097.

36. Gawde,U., Chakraborty,S., Waghu,F.H. et al. (2023) CAMPR4: a 
database of natural and synthetic antimicrobial peptides. Nucleic 
Acids Res., 51, D377–D383.

37. Heselpoth,R.D., Euler,C.W. and Fischetti,V.A. (2022) 
PaP1, a broad-spectrum lysin-derived cationic peptide to 
treat polymicrobial skin infections. Front Microbiol., 13,
817228.

38. Rotem,S., Radzishevsky,I., Inouye,R.T. et al. (2006) Identification 
of antimicrobial peptide regions derived from genomic sequences 
of phage lysins. Peptides, 27, 18–26.

39. Kang,X., Dong,F., Shi,C. et al. (2019) DRAMP 2.0, an 
updated data repository of antimicrobial peptides. Sci Data,
6, 148.

40. Yang,Y., Liu,Z., He,X. et al. (2019) A small mycobacteriophage-
derived peptide and its improved isomer restrict mycobacterial 
infection via dual mycobactericidal-immunoregulatory activities. 
J. Biol. Chem., 294, 7615–7631.

Database, 2024, 00, baae022
DOI: https://doi.org/10.1093/database/baae022
Original article
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baae022/7635281 by guest on 19 M

ay 2024

https://creativecommons.org/licenses/by/4.0/

	ESKtides: a comprehensive database and mining method for ESKAPE phage-derived antimicrobial peptides
	 Introduction
	 Materials and methods
	 Data collection for the genomes of ESKAPE isolates and their phages
	 Obtaining peptides from ESKAPE phages and prophages
	 Activity evaluation and secondary structure prediction
	 Evaluate the physiochemical properties of the peptide

	 Results
	 Data summary
	 Pipeline and ESKAPE phage-derived peptides of ESKtides
	 Database access
	 Usage example

	 Discussion
	 Database architecture

	Supplementary Material
	 Data availability
	Conflict of interest
	Acknowledgements
	References


