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Abstract
The rapid growth in the number of experimental and predicted protein structures and more complicated protein structures poses a significant 
challenge for computational biology in leveraging structural information and accurate representation of protein surface properties. Recently, 
AlphaFold2 released the comprehensive proteomes of various species, and protein surface property representation plays a crucial role in 
protein-molecule interaction predictions, including those involving proteins, nucleic acids and compounds. Here, we proposed the first extensive 
database, namely ProNet DB, that integrates multiple protein surface representations and RNA-binding landscape for 326 175 protein structures. 
This collection encompasses the 16 model organism proteomes from the AlphaFold Protein Structure Database and experimentally validated 
structures from the Protein Data Bank. For each protein, ProNet DB provides access to the original protein structures along with the detailed 
surface property representations encompassing hydrophobicity, charge distribution and hydrogen bonding potential as well as interactive fea-
tures such as the interacting face and RNA-binding sites and preferences. To facilitate an intuitive interpretation of these properties and the 
RNA-binding landscape, ProNet DB incorporates visualization tools like Mol* and an Online 3D Viewer, allowing for the direct observation and 
analysis of these representations on protein surfaces. The availability of pre-computed features enables instantaneous access for users, signif-
icantly advancing computational biology research in areas such as molecular mechanism elucidation, geometry-based drug discovery and the 
development of novel therapeutic approaches.

Database URL: https://proj.cse.cuhk.edu.hk/aihlab/pronet/.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Proteins perform vital functions in a variety of cellular activi-
ties, and protein-molecule interactions decipher the complex-
ity of organisms such as gene expression regulation (25), 
signal transduction (1) and drug therapy (17). However, the 
intricate mechanisms underlying most protein-molecule inter-
actions remain elusive, impeding advancements in both mech-
anistic biology and pharmaceutical development. The interac-
tion process between proteins and molecules fundamentally 
relies on the recognition of protein surfaces, where charac-
teristics such as hydrophobicity, charge distribution, hydro-
gen/electron donor and binding steric hindrance. Thus, a com-
prehensive and efficient representation of the protein surface 
is essential to elucidate the mechanism of protein-molecule 

interaction. For example, Rudden et al. (21) demonstrated 
the utility of a single volumetric descriptor that encapsu-
lates both electrostatic properties and local dynamics of the 
protein surface for protein docking, achieving a notable 
average success rate of 54%. Traditional experimental tech-
niques like NMR-based measurements (2) and hydrophobic 
interaction chromatography (16) for assessing protein sur-
face properties can be labor intensive and expensive. Fur-
thermore, with the advent of the AlphaFold2 Protein Struc-
ture Database (23), a vast array of protein structures have 
been computationally predicted, signaling that conventional 
methodologies may not be sufficient to address the rapid 
evaluation of protein surface properties in this burgeoning
dataset.
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To circumvent the constraints of experimental methods, a 
variety of in silico techniques for analyzing protein surface 
properties have emerged, including MaSIF (6), FEATURE (11) 
and AutoDock (13). For example, AutoDock (13) assesses the 
biochemical properties on an atom-by-atom basis, while FEA-
TURE (11) constructs a spatial depiction of protein atoms 
using concentric shells within a 7.5 Å radius from a grid 
point, encompassing 80 different physicochemical properties. 
MaSIF (6) goes further by integrating geometric attributes, 
such as shape index and curvature dependent on the distance 
with chemical properties like hydropathy, continuum electro-
statics and the availability of free electrons/protons, across 
a geodesic radius of either 9 Å or 12 Å. Despite these tools 
offering great potential for downstream applications, they 
typically require a complex setup and are time-consuming 
to run. This results in inefficiency, as multiple users might 
redundantly compute the same protein properties locally. The-
oretically, given a fixed protein structure, the same tool should 
yield identical surface representations. To address this issue, 
we have developed a database that pre-calculates and pro-
vides the protein surface’s physicochemical properties, such 
as hydrophobicity, charge distribution, potential for hydro-
gen bonding and interacting surfaces. These properties are 
encoded for protein structures obtained from both the exper-
imentally validated Protein Data Bank (PDB) and the in sil-
ico AlphaFold Database (AlphaFold DB), enabling users to 
readily apply these features in their research. In addition, 
the successful de novo design of protein with learned sur-
face fingerprints underscores the vital role of precise surface 
characterization in functionally oriented protein engineer-
ing and lays the groundwork for advancements in synthetic
biology (7).

Similar to the physicochemical property, the RNA-binding 
landscape constitutes a crucial aspect of a protein’s surface. 
The ability to map RNA motifs directly onto RNA-binding 
proteins (RBPs) provides valuable insights into protein–
nucleic acid interactions (24). A notable example is the 
Pumilio/FBF protein family, which modulates translation by 
directly recognizing specific RNA motifs, like the UGUR 
sequences present in RNA transcripts (20). Thus, delineating 
the RNA-binding profiles of RBPs is essential for a com-
prehensive understanding of protein-molecule interactions. 
In this study, we employed the state-of-the-art deep-learning 

framework NucleicNet (15) to predict the binding preference 
of RNA constituents and the binding sites on the protein 
surface to provide RNA-binding landscape of the protein 
structure from the experimentally validated database (PDB) 
and in silico database (AlphaFold DB). While our dataset is 
predictive, it stands out as a pioneering resource designed for 
immediate application in a range of fields, from enhancing 
Clustered Regularly Interspaced Short Palindromic Repeats 
and CRISPR-associated protein 9 (CRISPR/Cas) system effi-
ciency (22) to discovering RBP-targeting therapies (10) and 
developing aptamer-based drug delivery systems (3). 

In summary, we have developed ProNet DB, a comprehen-
sive database dedicated to detailing protein surface features. 
This extensive resource encompasses physicochemical rep-
resentations and RNA-binding landscapes for over 326 175 
protein structures, including those from 16 model organisms 
within the AlphaFold DB and PDB. For each protein struc-
ture within our database, we provide not only the original 
molecular configuration but also a suite of surface property 
representations–such as hydrophobicity, charge distribution, 
potential for hydrogen bonding and interacting interfaces—
alongside detailed RNA-binding landscapes that include sites 
and preferences for RNA interaction. To enable users to intu-
itively explore and interpret these complex surface properties 
and RNA-binding profiles, ProNet DB is integrated with visu-
alization tools such as Mol* and an Online 3D Viewer. These 
platforms allow for the interactive and three-dimensional 
visualization of our comprehensive surface feature represen-
tations directly on the protein models. The server now can 
be assessed at https://proj.cse.cuhk.edu.hk/aihlab/pronet/, and 
future releases will expand the species and property coverage.

Materials and methods
Data source
To establish a robust foundation for ProNet DB, we began 
by aggregating protein structures for two key proteomes. We 
first collected 23 391 protein structures on Homo sapiens
proteome and 6042 protein structures on Saccharomyces cere-
visiae proteome from AlphaFold DB (23). If the corresponding 
experimentally validated protein structures exist in PDB, we 
supplemented the protein structure with the highest resolu-
tion from PDB (H. sapiens: 6030, S. cerevisiae: 1160) (4). Our 

Table 1. The model organism proteomes in ProNet DB

ID Species Name Reference proteome AlphaFold DB PDB

1 Arabidopsis thaliana Arabidopsis UP000006548 27 434
2 Caenorhabditis elegans Nematode worm UP000001940 19 694
3 Candida albicans C. albicans UP000000559 5974
4 Danio rerio Zebrafish UP000000437 24664
5 Dictyostelium discoideum Dictyostelium UP000002195 12 622
6 Drosophila melanogaster Fruit fly UP000000803 13 458
7 Escherichia coli E. coli UP000000625 4363
8 Glycine max Soybean UP000008827 55 799
9 Homo sapiens Human UP000005640 23 391 6030
10 Methanocaldococcus jannaschii M. jannaschii UP000000805 1773
11 Mus musculus Mouse UP000000589 21 615
12 Oryza sativa Asian rice UP000059680 43 649
13 Rattus norvegicus Rat UP000002494 21 272
14 Saccharomyces cerevisiae Budding yeast UP000002311 6040 1160
15 Schizosaccharomyces pombe Fission yeast UP000002485 5128
16 Zea mays Maize UP000007305 39 299

326 175 7190
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pursuit of a more exhaustive database led us to further incor-
porate proteomes from an additional 14 model organisms, 
sourced from AlphaFold DB. These organisms span a diverse 
array of species, including plants like Arabidopsis thaliana and 
Zea mays, animals such as Caenorhabditis elegans, Danio 
rerio, Drosophila melanogaster, Mus musculus and Rattus 
norvegicus, as well as unicellular organisms including Can-
dida albicans, Dictyostelium discoideum, Escherichia coli, 
Glycine max, Methanocaldococcus jannaschii, Oryza sativa
and Schizosaccharomyces pombe. Finally, the proteomes of 
these model organisms sufficiently expanded ProNet DB pro-
tein structure coverage from 29 433 to 326 175 (Table 1) and 
led to a more comprehensive and user-friendly database.

Protein surface physicochemical property
The MaSIF (6) framework serves as a powerful tool for encod-
ing protein surface fingerprints, enabling a detailed represen-
tation of a protein’s surface properties. By assigning calculated 
physicochemical features to each vertex of a discretized molec-
ular surface, MaSIF provides a clear and precise depiction 
of the protein’s surface properties. As illustrated in Figure 1, 
MaSIF enables users to identify distinct regions of the pro-
tein surface, differentiating hydrophilic from hydrophobic 
areas and pinpointing potential interaction sites—referred to 
as the interacting face. We have applied the MaSIF tool to 
all proteins within our database, thus furnishing users with 
an accessible physicochemical property profile for each pro-
tein. These meticulously computed features are invaluable 
for a variety of downstream applications. They enhance the 
accuracy of binding site predictions (18), improve the predic-
tive modeling of protein–protein interactions (9) and facilitate 
the innovative field of protein design (8). Indeed, recent 
research has underscored the importance of surface properties 
in function-oriented protein design, revealing that such geo-
metric features are instrumental in advancing protein-centric 
research and development (7).

Protein–RNA binding profiles
RNA–protein interactions are pivotal in a myriad of cellular 
processes, and understanding the dynamics between RNAs 
and RBPs is key to unraveling these activities. In ProNet DB, 
we have systematically mapped the interactions between var-
ious RNA constituents and RBPs. Utilizing the deep-learning 
framework established by NucleicNet (15), we have discerned 
both the binding preferences and the specific binding sites for 
multiple RNA bases across protein structures from AlphaFold 
DB and PDB. This includes key components such as ribose 
(R), phosphate (P) and the nucleobases adenine (A), guanine 
(G), cytosine (C) and uracil (U). The RNA-binding profiles 
for proteins in our database are meticulously categorized into 
sub-classes within each species, reflecting the diverse func-
tional roles these proteins fulfill. ProNet DB allows users to 
delve into protein properties with ease, including the com-
position of the RNA backbone and the binding predilections 
for different bases. This not only paints a detailed picture of 
the protein–RNA binding landscape but also sheds light on 
broader protein surface characteristics. 

Results
Database statistics
Currently, ProNet DB encompasses an expansive collection of 
proteome entries, spanning over 16 model organism species 
and totaling 333 365 records from both AlphaFold DB and 
PDB. Our web interface, depicted in Figure 2, serves as 
the gateway to the database and is carefully segmented into 
three primary sections: prediction tools, database queries 
and visualization tools. The entries are detailed as follows: 
H. sapiens accounts for 23 391 from AlphaFold and 6030 
from PDB, while S. cerevisiae contributes 6040 and 1160, 
respectively, in addition to the contributions from 14 other 
model species (Table S1). We have organized these pro-
teins into functional sub-classes, including categories such 

Figure 1. An overview of the ProNet DB and the illustration for two main outputs. The right panel shows the example of the protein surface 
physicochemical property and RNA-binding profiles.
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Figure 2. User interface of ProNet DB. Top-left: Home page contains three subsections: servers, databases and visualization tools. Top-right: NucleicNet 
DB page. Users can search, filter and view the searched results. On the top-right corner of NucleicNet DB page, a toggle button provides different 
protein sources. Bottom: Protein information page and visualization details for each item.

as antibodies and enzymes. For H. sapiens, the protein 
structures are distributed among 15 sub-classes: antibodies, 
contractile proteins, enzymes, hormonal proteins, structural 
proteins, storage proteins, transport proteins, zinc-finger pro-
teins, receptor proteins, domain-containing proteins, defensin 
proteins, repeat proteins, subunit, protein kinases and an oth-
ers category for unclassified proteins. From Figure 3A, we 
observe that despite a significant number of structures being 
labeled as unknown (7351 entries), the majority of human 
protein types are clustered among enzymes (3652 entries), 
domain-containing proteins (2268 entries) and receptor pro-
teins (1640 entries). In Figure 3B, we present a comparison 
between the proportions of hydrophobic and hydrophilic ver-
tices against the interacting face proportion for AlphaFold2 
Human proteins. A notable pattern shows that the hydrogen 
bond (H-bond) receptor region is statistically more significant 
than the H-bond donor region in AlphaFold Yeast proteins. 
Furthermore, Figure 3C indicates that a substantial propor-
tion of protein structures remain unverified by experimental 

methods, with 66.9% for H. sapiens and 75.2% for S. cere-
visiae. The accuracy of protein structure predictions is high-
lighted in Supplementary Figure S2, where 80.6% of validated 
H. sapiens proteins and 74.8% of validated S. cerevisiae pro-
teins exhibit an RMSD ≤ 2.0. In addition, Figure 3D shows 
that S. cerevisiae proteins have a higher overall number of 
nucleic acids compared to those of humans. The statistical 
distribution of chain numbers in both PDB human and yeast 
datasets is depicted in Figure 3E. For a more comprehensive 
statistical analysis of human and yeast data, please refer to 
Supplementary Figure S1, while information on the proteomes 
of other model organisms is available in Supplementary Table 
S1.

Case study
Here, we have utilized the CRISPR/Cas9 gene editing system 
as a case study to investigate protein–nucleic acid interactions, 
a topic of considerable interest due to the system’s widespread 
use and potential for precise genetic modifications. The Cas9 
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Figure 3. ProNet DB statistics for both human and yeast results in AlphaFold DB and PDB. (A) The functional classification for protein structures in both 
AlphaFold DB and PDB. (B) The upper panel illustrates the protein surface physicochemical property distribution including hydrophilic, hydrophobic and 
interacting face region proportion of human protein surface in AlphaFold DB. The beneath panel reveals the distribution of the positive/negative charge 
region and the Hbond Donor/Receptor region proportion of yeast protein surface in AlphaFold DB. (C) Venn diagram shows the number of experimentally 
validated protein structures from PDB, compared with computationally predicted structures from AlphaFold DB. (D) Detailed comparison of the 
proportion of binding profiles of each RNA constituent in PDB, e.g. four bases: adenine (A)/guanine (G)/cytosine (C)/uracil (U) and two backbone 
constituents: phosphate (P) and ribose (R). (E) The proportion of the number of chains in the PDB database in human and yeast.

protein plays an important role in the CRISPR/Cas sys-
tem, and thus, understanding how Cas9 mediates RNA-
guided DNA recognition is an essential part of improving the 

gene editing system. The crystal structure of S. aureus Cas9 
(PDB: 5AXW) was chosen for protein surface physicochemi-
cal property and RNA-binding profile analysis. This in-depth 
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Figure 4. Case study (PDB: 5AXW): ProNet DB shows comprehensive information of the protein structure surface fingerprints as well as the 
protein–RNA binding landscape. On the left panel: Iface region is consistent with the nucleic acid-binding sites, and electron donor region is located at 
non-binding sites. On the right panel: The RNA-binding landscape shows the RNA-binding sites located at the inner region.

analysis is crucial for enhancing our understanding of Cas9’s 
mechanism of action and for the ongoing refinement of the 
CRISPR gene editing technology.

As shown in Figure 4, we have highlighted the SaCas9–
single guide RNA (sgRNA) chimeric complex structure with 
its binding guide RNA, in which a central channel was formed 
in the middle of the structure. ProNet DB’s analysis of the pro-
tein surface fingerprint, particularly within the Iface region, 
reveals the nucleic acid-binding site’s prominence on the inter-
acting face as opposed to non-binding areas. Moreover, the 
electron donor region demonstrates a positive charge within 
the inner area, suggesting a strong interaction between the 
protein surface and nucleic acids in the central channel, which 
spans between the recognition and nuclease lobes (14, 19). In 
Figure 4, our predictions of protein–RNA binding profiles, 
inclusive of specific RNA-binding sites and preferences, cor-
roborate the physical presence of the RNA molecule within 
the inner confines of the protein structure, aligning with 
experimental evidence. These findings affirm that our in silico
methodology is adept at capturing the intricate physicochem-
ical properties of the protein surface and the RNA-binding 

landscape. This paves the way for future applications such as 
the design of sgRNAs (5) and the enhancement of CRISPR 
system functionality (12).

Code availability
The ProNet DB has conducted multi-scale data analyses on a 
vast array of entries, encompassing 326,175 proteins across 
16 different model organism species, sorted into a multi-
tude of functional categories. The homepage (Figure 2) inte-
grates all the server tools and is divided into three major 
components: prediction tools, database queries, and visu-
alization tools. An overview and interactive table present 
information ranging from protein name, PDB ID, UniProt 
ID, protein type, interacting face proportion, Hbond region 
proportion, positive/negative charge region proportion, and 
protein-RNA-binding profiles (see Table 2). This search func-
tionality is conveniently located in the top-right section of 
Figure 2, enabling users to quickly and efficiently pinpoint 
the information they require. The protein information page 
provides detailed information, download link of processed 
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Table 2. An example entry in ProNet DB shows the data content organi-
zation of one protein 17-beta-hydroxysteroid dehydrogenase type 1

Description Example

Basic 
profile

Entry ID P14061
Protein name 17-beta-hydroxysteroid 

dehydrogenase type 1
PDB ID 1A27
Uniprot ID P14061
Sequence length 327
Gene names HSD17B1, E17KSR, 

EDH17B1, EDH17B2, 
EDHB17, SDR28C1

Protein type Enzymes
Species H. sapiens (human)
EC number 1.1, 1.1
Hits for all PROSITE 

motifs
PS00061

Disprot ID DP00023
MaSIF 
profile

Number of total 
surface vertex

7265

Number of Interacting 
face vertex

1061

Interacting face region 
proportion

0.146

Number of 
hydrophilic vertex

933

Hydrophilic region 
proportion

0.128

Number of hydropho-
bic vertex

379

Hydrophobic region 
proportion

0.052

Number of Hbond 
donor vertex

232

Hbond donor region 
proportion

0.032

Number of Hbond 
receptor vertex

400

Hbond receptor region 
proportion

0.055

Number of positive 
charge vertex

400

Positive charge region 
proportion

0.055

Number of negative 
charge vertex

816

Negative charge region 
proportion

0.112

NucleicNet 
profile

Number of ribose 882
Number of phosphate 925
Number of guanine 501
Number of uracil 200
Number of adenine 175
Number of cytosine 188

An entry has three profiles: ‘Basic Profile’ contains basic information like 
the protein names, protein types, gene names, as well as the mapping id 
to other databases; ‘MaSIF Profile’ includes the physicochemical properties 
computed by MaSIF, describing the protein surface features; ‘NucleicNet 
Profile’ contains the RNA-binding preference information.

protein surface feature and visualization and more infor-
mation can be found on https://proj.cse.cuhk.edu.hk/aihlab/
pronet/#/services. The process code is available at https://
github.com/jxmelody/PronetProcess. The ProNet DB link is 
https://proj.cse.cuhk.edu.hk/aihlab/pronet/#/Home. All pri-
mary data are uploaded to Figshare https://figshare.com/s/
83bc43fac5aec6d1e0e6.

Supplementary material
Supplementary material is available at Database online.
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