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Abstract
Mapping of expression quantitative trait loci (eQTLs) and other molecular QTLs can help characterize the modes of action of disease-
associated genetic variants. However, current eQTL databases present data from bulk RNA-seq approaches, which cannot shed light 
on the cell type- and environment-specific regulation of disease-associated genetic variants. Here, we introduce our Single-cell eQTL 
Interactive Database which collects single-cell eQTL (sc-eQTL) datasets and provides online visualization of sc-eQTLs across different 
cell types in a user-friendly manner. Although sc-eQTL mapping is still in its early stage, our database curates the most comprehensive 
summary statistics of sc-eQTLs published to date. sc-eQTL studies have revolutionized our understanding of gene regulation in specific 
cellular contexts, and we anticipate that our database will further accelerate the research of functional genomics.
Database URL: http://www.sqraolab.com/scqtl
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Introduction
Functional interpretation of disease-associated genetic vari-
ants remains a significant challenge in the post-genome-wide 
association studies (GWAS) era (1). Mapping of expression 
quantitative trait loci (eQTLs) and other molecular QTLs can 
help characterize the modes of action of disease-associated 
genetic variants and identify the putative target genes they 
regulate. Efforts, such as Genotype-Tissue Expression (GTEx) 

(2) and eQTL-Gen (3), have identified eQTLs across a vari-
ety of tissues but have used bulk RNA-seq approaches, which 
cannot shed light on the cell type- and environment-specific 
regulation of disease-associated genetic variants.

Recent advancements in single-cell technologies have 
enabled eQTL analysis at single-cell resolution. Compared 
with bulk RNA sequencing which averages gene expression 
across cell types and cell states, single-cell assays capture the 
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transcriptional states of individual cells (4). Single-cell eQTL 
(sc-eQTL) mapping can identify context-dependent eQTLs 
that vary with cell states, including some that colocalize with 
disease variants identified in genome-wide association studies, 
thus holds great potential for prioritizing therapeutic targets 
and pathways driving disease pathogenesis (5–19). Although 
significant progress has been made in the field of sc-eQTL 
mapping, a comprehensive database summarizing sc-eQTLs 
across human tissues is still lacking.

In this context, we collected all sc-eQTL datasets published 
to date and built a Single-cell eQTL Interactive Database 
(SingleQ) which provides online visualization of sc-eQTLs 
across different cell types in a user-friendly manner. Briefly, 
our database offers the following key features.

(i) Our database curates the most comprehensive sum-
mary statistics of sc-eQTLs from 273 different cell types and 
annotates 77 467 cell type-specific eGenes.

(ii) Cell type-specific sc-eQTLs can be queried with four 
searching options by either genetic variant, gene symbol, 
genomic location or chromosome region, allowing it to be 
friendly for any user.

(iii) Summary statistics of sc-eQTLs can be browsed by 
both cell type and genes centered on genetic variant or 
genomic location. More importantly, our database used pop-
ular tools, such as LocusZoom.js and Tabix, to visualize 
sc-eQTLs and relevant information in a single page, allow-
ing users to identify cell type-specific sc-eQTLs easily and to 
prioritize target genes.

(iv) All sc-eQTL summary statistics can be downloaded for 
further customized analysis.

Materials and methods
Data collection
We collected all sc-eQTL studies from PubMed and Google 
Scholar with the following searching strategy: (single-cell 
expression quantitative trait loci) OR (single-cell eQTL) OR 
(sc-eQTL). Additional relevant studies were collected by 
screening the reference lists of studies in hand. Each study 
was manually assessed for suitability of inclusion, and sc-
eQTL summary statistics were downloaded, processed, har-
monized and visualized in our SingleQ database (http://www.
sqraolab.com/scqtl). Additionally, we manually curated cell 
type annotations to provide detailed information of each cell 
type.

Genetic variant information uniformation
Since the description of genetic variants from different sc-
eQTL datasets might be heterogeneous, we synchronized 
Single Nucleotide Polymorphism Database (dbSNP) IDs with 
the ones from the most recently released dbSNP build 156 
(20). For genetic variants that provided chromosome posi-
tions only, we first used LiftOver (https://genome.ucsc.edu/
cgi-bin/hgLiftOver) to convert them to GRCh37 (Genome 
Reference Consortium Human Build 37) (21) positions and 
then filled in the reference (or major) and alternative (or 
minor) alleles of genetic variants. For sc-eQTLs, the effective 
allele is the alternative allele (otherwise indicated elsewhere).

Standardization of sc-eQTL summary statistics
Since diverse strategies were used for eQTL mapping in dif-
ferent studies, the format of eQTL summary statistics varied 

across studies. We therefore manually harmonized the format 
of sc-eQTL summary statistics, and the following items were 
included in our online database, including chromosome num-
ber, base position, rsID, ENSEMBL gene ID, effective allele, 
non-effect allele, minimum allele frequency, β value, standard 
error and P-value. We used our custom scripts to fill out any 
information missing in certain studies.

Database design
SingleQ was built on a Python-based web framework. The sc-
eQTL summary statistics and relevant information are stored 
in PostgreSQL or retrieved using Tabix (22). Several dynamic 
web pages are implemented using HyperText Markup Lan-
guage, Cascading Style Sheets, jQuery and related JavaScript 
modules. Graphical visualization and tabular presentation of 
retrieved data are accomplished using JavaScript modules like 
LocusZoom.js (23) and DataTable.js (https://datatables.net/).

Results
Overview of SingleQ database
As of July 2023, we retrieved 15 independent sc-eQTL stud-
ies from which sc-eQTL summary statistics are available. For 
each study, sc-eQTL summary statistics were downloaded 
and harmonized based on the most recent dbSNP build 156. 
Briefly, SingleQ sc-eQTL database curated up to 77 467 eQTL 
summary statistics from 273 unique cell types covering dif-
ferent developmental stages of diverse tissues or cell states 
(Supplementary Table S1). To ensure uniform nomenclature, 
SingleQ mapped them to fine-grained terms (Supplementary 
Table S2).

We provide a user-friendly web interface for users to search, 
browse and download data. SingleQ allows users to retrieve 
sc-eQTL information from four perspectives: genetic variant 
by position, rsID, gene symbol and genomic region that spans 
no more than 200 kb (Figure 1A). When querying an individ-
ual variant, SingleQ displays all eQTLs between the genetic 
variant of interest and genes located within 2 Mb centered 
on the variant across all cell types and states (Figure 1B). 
In addition to summary statistics, SingleQ provides Locus-
Zoom.js visualization of eQTLs across all available cell types 
and cell states from the chosen study (Figure 1C). Each tri-
angle plot represents a unique eQTL with one specific gene 
nearby, where the Y-axis indicates the−log10(P-val) of eQTLs 
and the X-axis shows cell types or cell states distinguished 
by different colors. Using the ‘X-Axis’ button on the top left, 
users can browse the eQTLs either by cell types/states or gene 
symbols. Detailed information, such as study ID, cell type or 
state, genetic variant, gene symbol or ID, P-val and beta, can 
be obtained by hovering the mouse over the triangle plot. 
Using the button ‘Choose Study’ on the top left, users can 
browse across different studies.

When querying a gene symbol or chromosome region, Sin-
gleQ returns all eQTLs between the gene of interest and 
genetic variants located within 2 Mb upstream and down-
stream across all cell types and states (Figure 1D). The eQTL 
plots are visualized by LocusZoom.js (Figure 1E), with each 
triangle plot representing a unique eQTL with the gene of 
interest, where the Y-axis and X-axis display the−log10(P-val) 
of eQTLs and genomic region within 100 kb centered on the 
gene of interest, respectively.
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Figure 1. Web interface of SingleQ database. (A) Browser navigation bar and search box of SingleQ with an example. (B) Example of results obtained 
through variant search. (C) Example of LocusZoom plot in the results page of variant search. (D) Example of results obtained through region search. (E) 
Example of LocusZoom plot in the results page of region search.

Collectively, through single-cell eQTL data filtering and 
visualization, SingleQ aids in uncovering potential cell type-
specific regulatory effects.

Example search
We used a previously reported case to illustrate how Sin-
gleQ helps users to interpret the cell type- or state-specific

regulatory effect of genetic variants. The example involves the 
genetic variant rs1732887 associated with acute lung injury. 
The region containing rs1732887 (−1464 A/G) is expected to 
be a highly conserved putative binding site of the FOXP3 tran-
scription factor, where the alternative allele G of rs1732887 
might disrupt the binding site (24). Clinically, upregula-
tion of the IRAK3 gene nearby rs1732887 was observed in
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Figure 2. Exploration of cell type-specific regulatory effect of rs1732887 using SingleQ. (A) Variant-centric SingleQ view of eQTLs, showing 
associations between rs1732887 and expression levels of genes within 2 Mb across diverse cell types or cell states. (B) Summary statistics of 
rs1732887 with IRAK3 and RBMS1P1 in naïve B cells. (C) Examples of external link, PheWeb which indicates a link between low expression of this gene 
and lung-related diseases.

monocytes from patients of sepsis, one of the major causes of 
acute lung injury, suggesting that rs1732887 might confer risk 
for acute lung injury by upregulating IRAK3 gene expression.

We turned to our SingleQ database to determine the 
regulatory effects of rs1732887 on different genes nearby 
across diverse cell types or states. According to the search 
results, rs1732887 significantly affects expression of IRAK3
(P = 8.59E − 20, beta = −1.14) and RBMS1P1 (P = 7.90E − 18, 
beta = −1.10) in cis (Figure 2A and B). Specifically, the reg-
ulatory effects of rs1732887 on both IRAK3 and RBMS1P1
were only present in naïve B cells (Figure 2B), suggestive of cell 
type-specific regulation, which was unavailable from previous 
bulk RNA-seq of PBMCs. In addition, we observed nom-
inal correlation between different genotypes of rs1732887 
and TMBIM4 in T follicular helper cells, RP11-745O10.2
in CD8+ T cells (stimulatory) and Th2 cells (Figure 2B), 
which provided additional information for users’ reference. 

In addition to the cell type- or state-specific eQTL informa-
tion, SingleQ provides links to navigate other database related 
to the genetic variant or gene of interest, such as GTEx Por-
tal, gnomAD (25), GWAS Catalog (26), EnhancerDB (27) 
and eccDNA Atlas (28) (Figure 2C), which can help users 
to interpret the regulatory effect of genetic variant and func-
tions of genes. Through interactive navigation across multiple 
web applications, SingleQ provides crucial insights into co-
localizing GWAS signals with publicly available eQTLs and 
offers hypotheses on potential regulatory mechanisms.

Discussion
We have developed a comprehensive database of sc-eQTLs 
cross human tissues, covering 273 different cell types and 
annotating 77 467 cell type-specific eGenes. All research data 
are easily accessible and downloadable through our database 
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website. This database provides researchers to explore sc-
eQTLs through queries based on position, rsID, gene symbol 
and genomic region allowing for interactive visualization of 
cell type-specific eQTLs from diverse perspectives. Although 
the field of sc-eQTLs is still in its infancy, we anticipate that 
our sc-eQTL database will deliver on its promise to facili-
tate the elucidation of the molecular mechanisms underlying 
genetic associations with complex diseases. Since peripheral 
blood samples are more easily obtained than other tissue 
samples, more than half of the sc-eQTL annotations in the 
current version of SingleQ database are from peripheral blood 
mononuclear cells. As single-cell eQTL research continues 
to evolve rapidly, the SingleQ database will be continuously 
updated. Subsequent versions will further enhance database 
functionalities, aiming to provide more comprehensive and 
valuable information. In the future, we will continue to update 
SingleQ by adding more cell type- or state-eQTLs and enrich-
ing the functional modules to make SingleQ a powerful tool 
for investigating genetic regulation.

Supplementary Material
Supplementary material is available at Database online. Sin-
gleQ is freely available online at http://www.sqraolab.com/
scqtl.
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