
ARAapp: filling gaps in the ecological knowledge of 
spiders using an automated and dynamic approach to 
analyze systematically collected community data
Alexander Bach  1,*, Florian Raub2, Hubert Höfer  2, Richard Ottermanns1 and 
Martina Roß-Nickoll1
1Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
2Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstr. 13, Karlsruhe 76133, Germany
*Corresponding author: Tel: +49241/8027262; Email: alexander.bach@bio5.rwth-aachen.de

Citation details: Bach, A., Raub, F., Höfer, H. et al.  ARAapp: filling gaps in the ecological knowledge of spiders using an automated and dynamic approach 
to analyze systematically collected community data. Database (2024) Vol. 2024: article ID baae004; DOI: https://doi.org/10.1093/database/baae004

Abstract
The ARAMOB data repository compiles meticulously curated spider community datasets from systematical collections, ensuring a 
high standard of data quality. These datasets are enriched with crucial methodological data that enable the datasets to be aligned in 
time and space, facilitating data synthesis across studies, respectively, collections. To streamline the analysis of these datasets in a 
species-specific context, a suite of tailored ecological analysis tools named ARAapp has been developed. By harnessing the capabilities 
of ARAapp, users can systematically evaluate the spider species data housed within the ARAMOB repository, elucidating intricate 
relationships with a range of parameters such as vertical stratification, habitat occurrence, ecological niche parameters (moisture and 
shading) and phenological patterns.

Database URL: ARAapp is available at www.aramob.de/en
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Introduction
In times of global and climate change, a better understanding 
of species-specific ecological demands is essential for under-
standing the ongoing species decline (1–5). Thus, in a first step, 
there is an urgent need to make existing distributed ecologi-
cal information available in centralized structures to facilitate 
the ecological analysis of arthropod assemblages. For many 
species, however, little more than a few sentences on their 
ecology have been published, and these are often spread over 
past decades and are not easy to discover. The lack of species-
specific ecological knowledge on a large scale is also addressed 
by the Hutchinsonian and Grinnellian shortfall (6–8). This 
is especially conspicuous among less prominent taxonomic 
groups, particularly arthropods, which are notably affected 
by the issue of ‘taxonomic bias’ (9). For arthropods, the use 
of centralized and publicly available databases offering eco-
logical information is limited to a few groups (10–16). These 
databases primarily contain static trait values, like categori-
cal values (e.g. food preference, size classes or flight ability) 
or values measured on the individual specimen (e.g. length of 
Femur I). However, with an appropriate data basis, ecologi-
cal knowledge can also be generated in a dynamic data-driven 
approach (17). In this new paradigm, ecological knowledge, 
which traditionally has been obtained through laboratory 
experimentation, field observations and expert knowledge, is 

generated automatically and dynamically through the analysis 
of voluminous data using exploratory analysis techniques 
embedded in tailor-made analysis tools. The advantage of 
these automated applications is that the data volume, on 
which the analyses are based, steadily grows and, with appro-
priate assurance of data quality, a constant refinement of the 
results can be achieved. However, successful implementation 
of this methodology requires an adequate understanding of 
the targeted species group, associated specimen and data col-
lection techniques, in addition to strict requirements regarding 
data quality, necessary to obtain meaningful results. Such an 
approach has already been shown for soil organisms (18) or 
for spatio-temporal biodiversity data (19, 20).

Embracing dynamic, data-driven ecological knowledge 
generation further holds significant promise in addressing 
knowledge gaps related to the newly introduced invasive 
species (21–24). For example, it enables early detection of 
habitats that may be particularly vulnerable, providing a 
valuable window for implementing timely and targeted inter-
vention measures.

We utilized a recently operationalized European database 
(https://aramob.de/en) for systematically collected spider 
assemblage data to develop a tailor-made set of exploratory 
data analysis tools that are specifically designed to analyze 
habitat occurrence, phenology, companion species, vertical 
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Figure 1. Sampling sites with spider assemblage data available in 
ARAapp, with data from 26 October 2023.

Alt Text: A map of Germany and Austria with dots marking the sampling sites 
available for analysis in ARAapp.

distribution and two ecological parameters (moisture and 
shading) of spiders. These tools enable the interactive eval-
uation of a database through user-friendly web interfaces, 
allowing for the efficient generation of dynamic ecological 
knowledge since this dearth of ecological knowledge serves 
as a significant impediment to comprehending spider diver-
sity and implementing effective conservation measures in
Europe (25).

Methods
The ARAMOB data repository
ARAMOB is a data repository for systematically collected spi-
der assemblage data with standardized methods curated by 
the State Museum of Natural History Karlsruhe (Staatliches 
Museum für Naturkunde Karlsruhe) and the Arachnologi-
cal Society for the German language area (Arachnologische 
Gesellschaft). The modular Diversity Workbench framework 
(26) is used to manage the data, which offers the advan-
tage of facilitating standardization of data early in its life 
cycle through the specification of terminologies and ontolo-
gies, thus promoting the creation of Findable, Accessible,
Interoperable and Re-Usable data (27–29). At present, the 
data repository encompasses assemblage data collected from 
over 1100 sampling sites, representing 107 distinct European 
Nature Information System (EUNIS) habitat types, primar-
ily situated in Germany (Figure 1 and Table 1). This dataset 

Table 1. Distribution of sampling sites across first-level EUNIS 2012 habitat 
categories, with data from 26 October 2023

EUNIS habitat type Sites with assemblage data

C: Inland surface waters 7
D: Mires, bogs and fens 18
E: Grasslands and lands dom-
inated by forbs, mosses or 
lichens

408

F: Heathland, scrub and tundra 22
G: Woodland, forest and other 
wooded land

510

H: Inland unvegetated or 
sparsely vegetated habitats

41

I: Regularly or recently culti-
vated agricultural, horticultural 
and domestic habitats

22

encompasses 646 distinct species and ∼450 000 individual 
specimens (last visited: 26 October 2023).

Data quality in ARAMOB
The assessment of biodiversity data quality necessitates a com-
prehensive evaluation of a set of quality metrics to determine 
its suitability for a specific purpose (30). This process com-
prises the consideration of three critical and interconnected 
components, namely, (i) the intended use, (ii) the relevant 
data type and (iii) the criteria employed to ascertain the data’s 
suitability in the intended context.

The intended use of the ARAMOB data repository is to 
furnish researchers with curated high-quality data packages 
to facilitate a cross-study analysis on spider assemblages to 
enhance species-specific ecological knowledge of spiders in 
Central Europe. To ensure the analyzability of community 
data across studies, it is essential to establish predefined data 
and metadata requirements. Given that pitfall trapping rep-
resents the most commonly employed method for studying 
spider assemblages, the following quality criteria are eluci-
dated further, employing pitfall data as an illustrative example 
divided into three distinct categories: ‘Species’, ‘Methods’ and 
‘Sites’.

The ‘Species’ identification must be done to species level, 
count data must be aggregated trap- or sampling-plot based 
to be spatial explicit (31). In the ‘Site’ section, a detailed expo-
sition of the limitations pertaining to the sampling plots is 
provided. Foremost, it is imperative to ensure that species and 
individual counts are consistently attributed to specific habi-
tats, ensuring a clear association between the data and their 
respective ecological and local contexts. Moreover, it is essen-
tial to exercise caution when dealing with highly aggregated 
data, such as information derived from country checklists, as 
they lack the requisite granularity for in-depth analysis and 
are therefore deemed unsuitable for further ecological anal-
ysis. It is also essential to methodologically separate species 
data collected using different methods (such as pitfall trap-
ping and sweep-net sampling), to clearly attribute the resulting 
species count data to the corresponding method leading to a 
reduced bias in the analyses.

Although pitfall trapping is one of the oldest and most 
widely used systematic techniques for sampling ground-
dwelling arthropods (based on their activity, therefore mea-
suring ‘activity density’), just recently a first approach was 
published to standardize individual capture numbers across 
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studies using the catch per unit effort (CPUE) (32). To imple-
ment this approach effectively, ‘methodological’ data must at 
least contain information about the number of pitfall traps 
deployed at each sampling site and the duration of sampling, 
to facilitate accurate calculation of CPUE values.

Accurately assessing the community structure and dynam-
ics of a given ecosystem is essential for understanding its 
ecological processes and informing conservation efforts. In 
this regard, it is imperative to conduct habitat-based sam-
pling to capture the full spectrum of heterogeneity within the 
system (33). Specifically, each sampling ‘Site’ (Plot) should be 
representative of a discrete habitat, devoid of any significant 
ecological gradients within it, to generate reliable and mean-
ingful results (34, 35). To achieve this goal, the EUNIS habitat 
classification system (36) is utilized, which provides a compre-
hensive and standardized framework for categorizing habitats 
based on their unique ecological characteristics in Europe.

Data pipeline
First, a data pipeline was developed in R (version 4.2.2) using 
RStudio to prepare the data using a knowledge discovery in 
databases approach (37, 38). After the export, the selected 
data undergo a series of preprocessing steps like standardiz-
ing fields with user-specific input (e.g. male/female, m/f) within 
the program routine to ensure consistency and homogeneity. 
The data cleaning step is an essential aspect, in which the data 
are systematically examined to ensure its quality and integrity. 
This step includes the assessment of data completeness and 
correctness by testing for the availability of the predefined 
criteria mentioned earlier. Additionally, validity and plausi-
bility of taxonomic names is verified by comparing with the 
country list module of Araneae—Spiders of Europe (39). This 
query retrieves the current, valid species list for Germany 
and compares it to the taxonomies present in the data frame. 
Invalid species names are identified and recorded in an addi-
tional table for manual review by the data manager. As more 
data from other countries become available in the future, this 
review will be conducted depending on where the particular 
dataset was collected. This process ensures that the data are 
accurate and reliable and that any errors or inconsistencies 
are identified and addressed in a systematic manner. In the 
last step, count data are temporally and spatially normalized 
using the CPUE (32) to obtain comparable numbers of indi-
viduals across studies, and clean data tables are prepared for 
further applications.

ARAapp description
The application is also written in R and uses shiny (40) 
and shinydashboard (41) packages to develop an easy-to-
use graphical web interface. The application can be accessed 
via the ARAMOB site (www.aramob.de/en) with any modern 
browser. Running on a server, it eliminates the need for users 
to install R or download any additional software. After start-
ing the application, the data pipeline is launched to export 
and prepare all available datasets, sampled with pitfall traps 
to the point where it is available for individual analysis. In 
the application, a selection list allows users to choose a spider 
species and various analysis tools. Depending on the selected 
tools and species, the prepared datasets are then filtered and 
undergo additional processing steps to match the necessary 
data aggregation level and requirements. This is particu-
larly important when dealing with datasets that have varying 

temporal resolutions. In certain types of analyses, temporal 
resolution is not a crucial consideration and data that are 
only available in aggregated form over the entire collection 
time span can be utilized. In contrast, for other applications 
such as the study of phenological patterns, a high temporal 
resolution is essential. As previously mentioned, the data are 
initially exported and prepared by the data pipeline. Within 
the ARAapp, the data are further aggregated and filtered to 
ensure compatibility with the chosen analysis methods. Addi-
tionally, the users can set their own filters and restrictions on 
the data. At each analysis, all underlying processed data sup-
porting the respective graph can be downloaded and utilized 
for further in-depth statistical assessments.

All graphs are built using the plotly package (42) and can 
be adjusted by zooming, scaling or manually hiding the data 
points. They can also be downloaded as a Portable Network 
Graphic and used for publications or other purposes. For each 
of the following tools, there is also a detailed manual, addi-
tionally supported by a general Frequently Asked Question 
secion available in the application.

Results
Analysis tools
Currently, there are five analysis tools available in the appli-
cation. For each analysis, different quantity measures can 
be chosen, mainly the relative activity density (respectively, 
CPUE), the frequency value which is calculated as the percent-
age of sites in each class with a presence value for the chosen 
species and the percentage proportion of the selected species 
in its specific assemblage.

The ‘Companion species’ of the selected spider species are 
analyzed using the percentage share of spider species also sam-
pled on the corresponding sites plotted on a horizontal bar 
chart. The user has the possibility to define the percentage 
threshold value manually with a slider widget. Furthermore, 
the user can restrict the trapping period to a specific time span 
to uncover temporal changes in communities.

Examining ‘Ecological parameters’, the next tool applies 
the methodology established by Entling et al. (43) to calculate 
shading and moisture parameter values for Central European 
spiders. This computation is solely based on the assemblage 
data, which is obtained from a carefully filtered dataset fol-
lowing the criteria outlined by Entling et al. (43). Initially, 
shading and moisture values are assigned to each sampling 
plot by conducting a correspondence analysis (CA) on the 
community data. The CA generates site scores, which are 
subsequently normalized between the range of 0 and 1, repre-
senting the first axis (shading) and the second axis (moisture) 
of the CA. The resultant parameter values, referred to as site 
scores, are then presented through a histogram visualization. 
In this histogram, the x-axis corresponds to the parameter 
values, while the y-axis represents the cumulative count of 
assemblages falling within each respective parameter width. 
This is illustrated in Figure 2 by the example of shading 
for two lycosid species with different shading requirements, 
Xerolycosa nemoralis (Westring, 1861), which prefers forest 
edges, and Xerolycosa miniata (C. L. Koch, 1834), which is 
inclined toward calcareous grasslands.

‘Habitat occurrence’ can be analyzed using box plots that 
illustrate the distribution of the selected species among EUNIS 
habitat types (currently available up to the fourth level, see 
Figure 3). By default, the top level of the EUNIS hierarchy is 
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Figure 2. Distribution of the shading parameter values for X. nemoralis and X. miniata, and the graphs were downloaded on 26 October 2023.

Alt Text: Two histograms depict the distribution patterns of two wolf spider species, X. nemoralis and X. miniata, along a shading gradient ranging from 0 (open 
land) to 1 (forest). In general, X. nemoralis displays a relative distribution across the entire gradient, peaking around 0.75, indicating a preference for more shaded 
habitats. On the other hand, X. miniata appears to favor open land environments, with its concentration observed between 0.00 and 0.50 on the shading gradient.

Figure 3. Habitat occurrence of M. trilobatus according to the EUNIS habitat classification at the third level within Class E: grasslands and lands 
dominated by forbs, mosses or lichens. The frequency data for the individual classes are as follows (sites with the presence of M. trilobatus/total sites in 
ARAMOB) E1.2: 12/86, E1.7: 6/14, E1.9: 15/26, E2.1: 1/6, E2.2: 13/28, E2.6: 14/24, E2.7: 8/35, E3.5: 1/12, E4.3: 7/69, E4.5: 3/46, and E5.1: 6/16. The 
graph was downloaded on 26 October 2023.

Alt Text: The barplot illustrates the distribution of relative activity density for M. trilobatus across different habitats categorized at the third EUNIS habitat level. 
Notably, the species demonstrates a versatile ability to colonize a diverse array of habitats, encompassing both dry and mesotrophic environments. Additionally, 
the data reveal M. trilobatus’ colonization not only in anthropogenically influenced habitats but also in semi-natural settings, such as calcareous grasslands.

displayed first. To access the next lower levels, the correspond-
ing level can be selected using the radio buttons, followed by 
the selection of the desired habitat category (e.g. E: grassland 
or G: forest) via the ‘Habitat Type’ dropdown list. Moreover, 
it is possible to apply data filtration based on the specific year 
of inquiry or the corresponding altitudinal range.

The ‘Vertical distribution’ of a species is shown on a hori-
zontal bar chart where altitude meters are grouped in 100-m 
classes.

‘Phenology’ is analyzed using a scatterplot graph and is 
separated by gender. If the gender is not available, it is still 
shown as ‘unknown’ in the graph. In the program routine, 
the start and end dates of the sampling interval are used to 
calculate the date median, which is intended to minimize the 
error by considering a midpoint rather than either the start 
or end date alone. The graph legend allows the user to hide 
data for unknown genders if desired by clicking on the corre-
sponding label. As a further filter, the altitudinal range of the 
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plots used in the analysis can be restricted with the ‘Altitude’
slider.

Ensuring the reliability of generated results is of paramount 
importance, and as a preliminary gauge, all tools incorporate 
quality metrics. Each tool initiates the process by furnishing an 
overview of the database’s magnitude, indicating the extent to 
which the investigated species is represented across the maxi-
mum available sites. In some cases, this evaluation can be even 
more granular; for instance, the Habitat occurrence tools fur-
nish an additional breakdown of the numerical distribution 
of investigated habitat types within the dataset, accompa-
nied by specific instances of evidence for the studied species. 
Whenever feasible, it is recommended to evaluate these met-
rics to identify any potential disparities or imbalances within 
the data.

Application example: Mermessus trilobatus
Mermessus trilobatus (Emerton, 1882) is a successful inva-
sive spider species in Central Europe. Originating from North 
America, it was introduced to South Germany in the late 
1970s (44). Since then, M. trilobatus has spread across most 
parts of Europe (45–48) and, unlike many other alien spiders 
that are synanthropically bound (49), it colonizes openland 
habitats (50, 51). Because the ecological requirements of alien 
species in newly established areas may differ significantly from 
those of their original habitats, understanding the factors that 
may promote the spread of this species is important to make 
early predictions about further dispersal. In Central Europe, it 
has taken 30–40 years since the first record until more exten-
sive studies on the ecology of the species and possible drivers 
for the success of its colonization were carried out (50–54). 
Here, tools that automatically analyze large datasets can help 
to generate initial insights into the ecological requirements at 
an early stage, as well as the discernment of species or habitats 
that may be notably vulnerable. Currently, there are 130 sites 
with assemblage data available in the ARAMOB database 
with presence values of M. trilobatus in Germany from 2003 
to 2020 (last visited: 26 October 2023).

An initial analysis with ARAapp indicates that M. trilo-
batus primarily thrives in EUNIS Habitat Type E: grasslands 
and lands dominated by forbs, mosses or lichens. Among 
the compiled assemblage data from 407 distinct sites, M. 
trilobatus was recorded in 22.4% of cases. It is noteworthy, 
however, that among the 508 available assemblage datasets 
from forests (EUNIS: G), M. trilobatus records are only dis-
cernible in six sampling sites. This limited occurrence suggests 
that the forests are unlikely to significantly contribute to the 
species’ spread. All other EUNIS habitat types are only spo-
radically represented in the ARAMOB database until now 
and thus will not be considered in the following analyses
(Table 1).

Upon a closer examination of the grassland habitat types 
at EUNIS Level 3, it becomes evident that a diverse array 
of habitat subtypes, ranging from dry and mesic to both 
acidic and calcareous are colonized, spanning from lowland to 
alpine regions (Figure 3). Furthermore, it is also evident that 
not only disturbed or anthropogenically transformed habitats, 
but also semi-natural habitats like calcareous grasslands are 
invaded. This finding fortifies the hypothesis that, alongside 
high dispersal behavior (55), low habitat specificity (51) plays 
a crucial role in the invasion success.

While invasive linyphiids have demonstrated the ability 
to effectively compete with native counterparts (56, 57), 
such competitive behavior has not been documented for
M. trilobatus yet (52). Utilizing the Companion species anal-
ysis tool, it is possible to discern species that may pose a 
considerable risk of competition with M. trilobatus in future. 
Four species belonging to the Linyphiidae family were iden-
tified, based on their equal body size and similar ecology, 
co-captured with M. trilobatus at a frequency exceeding 0.5. 
In decreasing order, these are Erigone dentipalpis (Wider, 
1834), Tenuiphantes tenuis (Blackwall, 1852), Erigone atra
(Blackwall, 1833) and Agyneta rurestris (C. L. Koch 1836). 
These findings align with the literature (50), underscoring the 
potential significance of these identified Linyphiidae species as 
potential competitors with M. trilobatus in future ecological 
scenarios.

In conclusion, the application of the developed ecological 
analysis tools was demonstrated to be an effective comple-
mentary method for conventional studies. While in case stud-
ies only limited sampling sites could be analyzed (51), those 
tools offer valuable supplementation. Regarding M. triloba-
tus, the analysis of the ARAMOB data suggests that the ability 
to colonize multiple habitat types could be a contributing 
factor to its rapid spread in Central Europe.

Discussion
One of the main benefits of ARAapp is its ability to allow 
researchers to visualize and analyze the large datasets quickly 
and easily. This can save time and resources compared to more 
traditional data analysis methods while considering that the 
tools do not generate statistically valid results. These must 
be performed in a downstream process, such as download-
ing the processed data in the tools or the raw data via the 
ARAMOB portal. With the expansion of the database, a 
more comprehensive understanding of the ecological require-
ments of spider species becomes attainable. As exemplified by 
Entling et al. (43), the ecological requirements of the spiders 
regarding moisture and shading in the habitats are limited 
to only approximately half of the spider species found in 
Germany. However, through automated evaluation facilitated 
by a growing dataset, previously unstudied species can be 
subjected to enhanced ecological assessments. As the foun-
dational data increases, these species can be more effectively 
characterized and their ecological attributes better compre-
hended, thereby contributing to a more holistic understanding 
of spider ecology. Overall, the results show that the tools 
programmed here are well suited to automatically visualize 
(aut-)ecological information from curated datasets. This kind 
of applications is especially useful for non-species specialists 
as the information is provided in an easily accessible web 
portal. For example, with the appropriate underlying data, 
initial analyses of newly introduced species can be performed 
as long as scientific studies with more detailed analyses on 
the specific species are lacking. This supports authorities or 
nature conservation organizations (58, 59). The utilization 
of a data management system, such as Diversity Workbench, 
during the data life cycle within the ARAMOB data repos-
itory further ensures a high level of standardization. This 
standardization enables the efficient adaptation of the applica-
tion to other organism groups. Particularly, organism groups 
that are sampled using the same method, such as ground 
beetles (Coleoptera: Carabidae), rove beetles (Coleoptera: 
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Staphylinidae) or woodlice (Isopoda: Oniscidea), can bene-
fit from the quick transferability of the application. Although 
other methods like arboreal eclectors can be integrated with-
out further ado, the extent to which the individual count 
numbers generated with these methods can be standardized 
across studies must still be examined.

Despite its many benefits, ARAapp does have limitations 
that researchers should be aware of. The main limitation is 
that they are only as good as the data they are based on. 
Even though the ARAMOB database is a reliable source of 
research-quality data on spider assemblages, it is still possible 
for bias to be present in the data. The most obvious bias here 
is of course the sampling method ‘pitfall trap’, which primar-
ily captures epigeic spider species (60) due to their activity. 
This means that species that build stationary webs or ambush 
or those that live and hunt within the herb layer are not accu-
rately represented (i.e. with a bias to males) or even completely 
absent from the data. Therefore, quality indicators such as 
the number of available datasets should always be checked 
to evaluate the significance of the respective tools. The same 
applies to the over- or under-representativeness of different 
habitat types. While underrepresented habitats are, due to 
standardization, less problematic in species count-based anal-
yses (aside from the small sample size), they often dominate 
frequency-based analyses. It is therefore essential to carefully 
evaluate the data quality indicators for sample size given in 
the respective analysis when interpreting the results.

Finally, this article aims to serve as an impetus for Euro-
pean researchers to actively contribute their systematically 
collected spider data to the ARAMOB data repository, thereby 
facilitating its availability for comprehensive analyses.

Data availability
The basic code of the application is available on GitHub 
(https://github.com/alexander-bach/ARAapp/), excluding the 
Structured Query Language query from the database and ini-
tial preprocessing steps necessitated by the database structure 
for security reasons. However, the application can be run with 
own data. Three tables are required, which are also provided 
as a template on GitHub. The first table, ARAMOB_data, 
encompasses all species, method and sampling plot relevant 
data compiled in the previously prepared data pipeline and 
can be filled with own data. The subsequent tables, EUNIS_list 
and TRAIT_list, are publicly available lists obtained from the 
Diversity Workbench framework. EUNIS_list facilitates the 
breakdown of EUNIS codes into habitat descriptions, while 
TRAIT_list comprises a comprehensive inventory of available 
spider traits.
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