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Abstract
The post-translational modifications occur as crucial molecular regulatory mechanisms utilized to regulate diverse cellular processes. 
Malonylation of proteins, a reversible post-translational modification of lysine/k residues, is linked to a variety of biological functions, 
such as cellular regulation and pathogenesis. This modification plays a crucial role in metabolic pathways, mitochondrial functions, 
fatty acid oxidation and other life processes. However, accurately identifying malonylation sites is crucial to understand the molecular 
mechanism of malonylation, and the experimental identification can be a challenging and costly task. Recently, approaches based on 
machine learning (ML) have been suggested to address this issue. It has been demonstrated that these procedures improve accuracy 
while lowering costs and time constraints. However, these approaches also have specific shortcomings, including inappropriate feature 
extraction out of protein sequences, high-dimensional features and inefficient underlying classifiers. As a result, there is an urgent 
need for effective predictors and calculation methods. In this study, we provide a comprehensive analysis and review of existing 
prediction models, tools and benchmark datasets for predicting malonylation sites in protein sequences followed by a comparison 
study. The review consists of the specifications of benchmark datasets, explanation of features and encoding methods, descriptions 
of the predictions approaches and their embedding ML or deep learning models and the description and comparison of the existing 
tools in this domain. To evaluate and compare the prediction capability of the tools, a new bunch of data has been extracted based 
on the most updated database and the tools have been assessed based on the extracted data. Finally, a hybrid architecture consisting 
of several classifiers including classical ML models and a deep learning model has been proposed to ensemble the prediction results. 
This approach demonstrates the better performance in comparison with all prediction tools included in this study (the source codes 
of the models presented in this manuscript are available in https://github.com/Malonylation).
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Introduction
Post-translational modifications
Post-translational modifications (PTMs) are important bio-
logical regulatory mechanisms and chemical modifications in 
a protein after its translation (1). PTMs are often playing 
vital roles in protein regulation (2) and their influence on the 
physicochemical properties (PCPs), maturity and activity of 
most proteins (3–5). PTMs are adding a modified group to 
one or more amino acids which in turn change the chemi-
cal nature of amino acid (6). PTMs contain covalent bonds, 
reversible and irreversible reactions that process the events, 
including cutting, folding and ligand binding (7). Recent stud-
ies have shown that each modification leads to a great effect 

on the protein structure in addition to the functionality of the 
proteins (8). Moreover, PTMs are affected by activity state, 
localization, turnover and interactions that target proteins’ 
interactions with other proteins (9, 10). PTMs are involved 
in various molecular functionality and biological processes 
such as signal transduction, gene regulation, gene activation, 
repression, DNA repair, cell cycle control, protein–protein 
interactions and protein functions (11–14). Disorders in these 
modifications cause different diseases including cancer, dia-
betes and neurological diseases such as Alzheimer and Parkin-
son (15–18). There are more than 600 types of PTMs (19) 
including phosphorylation, glycosylation, methylation, ubiq-
uitination, nitrosylation, SUMOylation, sulfation, acylation 
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and malonylation as well as numerous others in most cellular 
activities (1, 6).

Malonylation
Malonylation was firstly observed in mammalian cells and 
bacterial cells via a high-throughput proteomic analysis by 
Peng in 2011 (20). Malonylation occurs reversibly at the 
lysine/k residue of a protein by adding a negatively charged 
malonyl group via malonyl-CoA in eukaryotic and prokary-
otic cells (21). The biological process of lysine/K protein 
malonylation is schematically outlined in Figure 1. Further-
more, malonylation of lysine/k is confirmed to be a histone 
PTM. However, an abnormal histone modification is associ-
ated with disorders, such as cancers (21). As recent studies 
indicate, malonylation has been regulated in protein local-
ization, enzymatic activity, protein stability and many other 
biochemical processes (22). Moreover, malonylation plays 
significant role in various metabolic pathways, for exam-
ple, fatty acid synthesis and oxidation, Krebs cycle, amino 
acid degradation, mitochondrial respiration, glycolysis and 
modification of histones that are related to gene expression 
and chromosome configuration (23–25). Recently, it has been 
observed that sirt5, a member of the lysine/k deacetylases 
(KDACs), can catalyze the lysine/k demalonylation reaction 
in mammalian cells. Therefore, maybe both two modifica-
tions (acetylation and malonylation) available in the different 
cell compartments are regulated by lysine/k acetyltransferases 
and KDACs (22). According to the new studies, malonyla-
tion does have vital roles in signaling molecules in mammalian 
cells, mouse liver and bacterium accharopolyspora (26). Any 
disorder type in the malonylation process plays a potential 
role in type 2 diabetes, cancer and genetic disease (23–27). 
Recognition of malonylation sites in substrates is an impor-
tant initial step in understanding the molecular mechanisms 
underpinning protein malonylation. Due to advancement of 
high-throughput mass spectrometry (MS) techniques, many 
malonylation-containing peptides have been discovered (28). 
However, because of the dynamic features of malonylation 
and the limitations of experiment methodologies, identifying 

the exact substrates or locations on a wide scale remains 
difficult.

Motivation
In general, the problem of identifying malonylation sites has 
remained a challenge despite its functional significance (13). 
High-throughput experimental methods for the discovery of 
malonylation are costly and time-consuming. For the identifi-
cation of malonylation sites, computational methods are more 
cost-effective and time-effective than experimental methods 
(29). As a result, machine learning (ML) approaches for 
solving such problems have grown in popularity (30, 31). 
There is a considerable amount of malonylation data avail-
able from various publicly accessible databases, which are 
valuable resources for extracting patterns to learn new models 
for malonylation prediction (13). Thus, there exists a crucial 
need for prediction methods and corresponding tools. Using 
ML approaches and experimental datasets, we will be able 
to select the optimal predictive models among those to iden-
tify malonylation sites in biological sequences (32). To date, 
there is a relatively large body of research works in the area 
of computational methods for predicting malonylation sites in 
protein sequences based on ML approaches (33). To translate 
the aforementioned malonylation site prediction problem into 
supervised ML problem, the protein code IDs, wherein the 
positive site data (polypeptide sequences with a target residue 
that has undergone malonylation) have been approved using 
the MS method, are downloaded from a database contain-
ing the PTM (e.g. malonylation). Additionally, the protein 
sequences are obtained from the UniProt database. Then, 
the positive and negative sites (polypeptide sequences with a 
target residue not affected by malonylation) from the target 
protein sequences are identified. The majority of the exist-
ing works are based on classical ML algorithms, wherein the 
standard pipeline of a pattern recognition chain based on the 
feature engineering is followed. The rest of the works are 
based on end-to-end deep learning (DL) in which the fea-
tures are learned by a deep network or through a pre-trained 
network itself. The utilized algorithms are normally trained 

Figure 1. The schematic representation of malonylation process in a protein.
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through labeled data extracted from several databases recog-
nized as benchmark data. Some of the works are equipped 
with a tool to address the usability.

Contribution of this work
In this manuscript, we perform a comprehensive review on all 
existing approaches, tools and databases extracted, designed 
and developed for the prediction of malonylation sites in 
protein sequences. The works are categorized and compared 
based on their core predictive models. The feature set is struc-
tured according to their types into three different subsets 
and each feature is fully described. Also, the main existing 
tools in the literature are described and the embedded pre-
diction models are mentioned. To compare the performance 
of the shortlisted tools, a new dataset based on the most 
updated public databases is extracted which is then used for 
the sake of training and testing the tools based on the selected 
features utilized in the tools. Also, we have proposed our pre-
diction approaches utilizing classical ML and DL models in 
order to possible improve the prediction capability of mal-
onylation sites within the extracted protein sequences. The 
utilized feature set, however, is selected experimentally. The 
rest of the paper is as follows. Benchmark databases consist-
ing of PTMs are explained in Section ‘Databases and Pre-
processing’, wherein the required preprocessing procedures 
are described as well. The utilized features in the classifica-
tion approaches as well as the existing categories are fully 
described in Section ‘Description of Features’. Section ‘Embed-
ded Algorithms in Machine Learning-based Prediction Mod-
els’, describes the statistical learning models used in the 
malonylation sites prediction approaches from a general view-
point followed by the presentation of evaluation functions 
used in the prediction models in Section ‘Model Evaluation’. 
Section ‘Approaches for Prediction of Lysine Malonylation 
Sites in Protein Sequences’, surveys the works existing in 
the literature to predict the malonylation sites in the protein 
sequences explaining the embedded classifiers as well as used 
features and classification reports categorized according to the 
main embedded models. The existing tools in literature are 
described and compared in Section ‘Analyzing and Compar-
ing the Existing Tools’, based on the newly extracted dataset. 
The proposed prediction models in order to improve the pre-
diction capability of the malonylation sites are mentioned in 
Section ‘Experimental Results and Improvement’, followed 
by discussion, computational and comparison results. Finally, 
Section ‘Conclusion and Future Work’, concludes the paper.

Databases and preprocessing
Description of existing databases
Nowadays, MS-based proteomics has accumulated a large 
volume of data for PTMs. Researchers in the field of scien-
tific computations can use available experimental PTM data in 
publicly available databases for building different prediction 
models for example or running some experimental operations 
(6). To assure the quality of the data, they can use available 
databases to collect experimentally validated malonylation 
sites of proteins such as database PTM (dbPTM) (34), Protein 
lysine/k modification database (PLMD) (35) and compendium 
of protein lysine/k modification (CPLM) (36) as follows.

• dbPTM: The 2019-dbPTM has been considered as a gen-
eral and comprehensive database. It contains various 

information about different types of PTM data from 
more than 30 public databases and contains 903 800 
experimental sites in about 130 types of PTMs from dif-
ferent organisms. Nevertheless, in the updated version of 
dbPTM-2022, there are 2 777 000 PTM sites generated 
by extracting existing databases and manual curation of 
literature, wherein more than 2 235 000 are experimen-
tally verified. More than 42 new modification types were 
added to this version. There have been a number of studies 
revealing the upstream regulators of PTM substrate sites 
in the past few years because of the increasing number of 
studies on the mechanism of PTMs.

• CPLM: A subgroup of protein PTMs, protein lysine/k 
modifications (PLMs), occurs at lysine/k residues of pro-
teins and plays a key role in biological processes. Disor-
ders of these modifications can lead to several diseases. 
CPLM is an online resource for studying experimentally 
observed PLMs extracted from the literature and pub-
lic databases. Now, CPLM contains more than 592 600 
sites for up to 29 types of PLMs on about 463 000 
unique lysine/k residues of 105 673 proteins in 219 var-
ious species. In addition to the basic information and 
specifics on PLM sites of each protein entry, augmented 
annotations from 102 additional resources have been 
included to cover 13 aspects.

• PLMD: PLMD is a significant database for up to 20 PLMs 
at the protein lysine/k residues that play a critical role 
in regulating biological processes. PLMD contains more 
than about 284 700 modification events in about 53 500 
proteins across 176 eukaryotes and prokaryotes that exist 
in PLMD data in CPLM 4.0 database.

Data acquisition and preprocessing
Acquisition and preprocessing of protein sequences data for 
the sake of classification are performed as follows:

• Data acquisition: Data are extracted from an approved 
and published labeled dataset. The dataset must include 
both positive samples (polypeptide sequences with a tar-
get residue that has undergone malonylation) and negative 
samples (polypeptide sequences with a target residue not 
affected by malonylation). This inclusion of both types 
of samples is crucial to facilitate the training process for 
accurate malonylation site prediction.

• Reducing the homology: The cluster database at high 
identity with tolerance (CD-HIT) program is designed to 
reduce homology and to filter out similar sequences in the 
extracted database.

• Removing the inconsistent subsequences: The subse-
quences at the starting/ending point of the original pro-
tein sequences whose length is shorter than determined 
window length are removed from database.

• Managing imbalance dataset: To mitigate the imbalance 
sample sizes, the negative subset is under-sampled and a 
sample with the equal size as the positive set is created.

Description of features
Feature extraction and selection is the key part in the pipeline 
of a classical ML or pattern recognition approach. There-
fore, the feature description of the most important features 
is presented here as per their corresponding taxonomy.
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Sequence-based features
1. Amino acid composition (AAC): The AAC refers to the 
distribution of amino acids in the sequence of a protein and 
information about the frequency of amino acids as a vector 
1 in 20 for each protein (37, 38). This information is calcu-
lated for each amino acid in a protein/peptide by using the 
following equation wherein the numerator is the mean of all 
the amino acids of type i and the denominator contains the 
total number of amino acids in the different window sizes: 

Fraction of  aaii =
nr. of  amino acids of  type i

nr. of  amino acids in a window size
(1)

2. Dipeptide composition (DPC): The protein sequences can 
be described by encoding the n-peptide compounds. N indi-
cates the number of desired amino acids in the selected win-
dow. The dipeptide is created from the conjugation of two 
sequential amino acids. According to the 20 available amino 
acids, there is the possibility of the formation of 400 dipep-
tides. Information on the AAC and DPC features are achieved 
by using Equation 1 and Equation 2: 

Fraction of deepi =
nr. of deepi

nr.of all possible dipeptides
(2)

3. Dipeptide deviation from expected mean (DDE): Dipeptide 
deviation from the anticipated mean (DDE) is proposed and 
developed in, which studies feature extraction based on amino 
acid combination to distinguish between epitopes and non-
epitopes in cells (39, 40). The dipeptide combination (DC) of 
a protein sequence is primarily calculated for this purpose as: 

DCm,n =
H (m,n)

H − 1
m,n𝜖{A,B,C,… ,Y} (3)

where Hmn is the number of paired mn amino acids and H is 
the protein sequence length. The theoretical mean (TM) and 
theoretical variance (TV) of a protein are then calculated as 
follows: 

TM (m, n) =
cm

ch
× cn

ch
(4)

TV (m, n) = TM (m, n) (1 − TM (m, n))
H − 1

(5)

where Cm and Cn represent the number of codons encoding 
the first and second amino acids, respectively, and CH repre-
sents the total number of codons. Finally, DDE is calculated 
using TV, TM and DC as follows: 

DDE (m, n) = DC (m, n) (1 − TM (m, n))
√TV (m, n)

(6)

4. Reduced alphabet: Each amino acid is encoded as an eight-
dimensional vector using the letters acid, basic, aromatic, 
amide, small hydroxyl, sulfur, aliphatic 1 and aliphatic 2. Con-
sequently, a vector of 8 L is used to encode a sample of length 
L (41).

5. Enhanced amino acid composition (EAAC): The EAAC 
(42) extracts information from protein sequences and calcu-
lates amino acid frequency. The EAAC can be calculated as
follows:

G (m,n) =
H (m,n)

H (n)

m𝜖{A,C,D, … ,Y}

n𝜖 {w1,w2,… ,wL} (7)

where H(m, n) is the number of amino acid type m, H(n) is the 
length of the window n.
6. Quasi-sequence order (QSO): Chou (43) first proposed the 
QSO descriptor, which counts the appearances of amino acids 
based on two distance matrices (i.e. the physicochemical dis-
tance matrix and chemical distance matrix). The details of 
description can be found in (43).
7. Numerical representation for amino acids (NUM): By 
numerical mapping of amino acids in alphabetical order, 
the 20 standard amino acids are represented as 1, 2, 3,..., 
20, and the dummy amino acid O is represented by num-
ber 21. NUM tries to turn sequences of amino acids into 
sequences of numerical values as in (31). With the core 
residue K omitted, each of the 25-residue segments in this 
case has 12 upstream and 12 downstream residues, creating a 
24-dimensional vector.
8. Bi-profile Bayes (BPB): A feature encoding technique called 
BPB was suggested by Shao et al. (44). A peptide’s probability 
vector is encoded by taking into account the data present in 
both positive and negative samples. If an unlabeled sample is 
represented by S = S1, S2, …, Sn, where each Sj, j = 1, 2,…, n
is an amino acid and n is the sequence window size, the BPB 
feature vector P is presented as follows: 

P = [x1, … , xn, xn+1, … , x2n]T (8)

The posterior probabilities of each amino acid in the posi-
tive samples data set are represented by the letters x1, x2, …, 
xn, while the posterior probabilities of each amino acid in the 
negative samples are represented by the letters xn+1, xn+2, …, 
x2n.
9. Binary encoding of amino acids (BINA): BINA is an easy 
to use and powerful feature that converts protein sequences 
into numeric vectors based solely on the properties of the 
amino acid sequences. BINA represents each amino acid as 
a 21-dimensional binary vector encoded by one ‘1’ and 20 
‘0’ elements. For instance, alanine (‘A’) is represented as 
100000000000000000000, cysteine (‘C’) is represented as 
010000000000000000000, and so on, while the dummy 
amino acid ‘O’ is represented as 000000000000000000001.
10. Profile encoding: Profile encoding can determine the fre-
quency of each residue and then construct the frequency 
sequence for every peptide because each peptide has 31 amino 
acid residues. The following formula can be used to determine 
each residue’s frequency: L is the sample length, i is the type of 
amino acid residue, and Ci is the number of times that residue 
appears in the peptide. The conversion of a sample to a feature 
vector PV can then be done as follows: 

PV = [Fi] , i = 1, 2,… , 20 (9)

11. EBPR: An innovative approach termed the EBPR method, 
which combines the profile encoding method with the encod-
ing based on attribute grouping (EBAG) method, performs 
better than any of its building block separately. A 31-
dimensional peptide is broken into a new sequence with five 
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groups in the first phase, which creates a new sequence using 
the EBAG method. The generative EBAG sequence is then 
encoded using the profile encoding approach, where each 
residue is given a value based on the frequency obtained using 
this method.
12. LOGO: LOGO encodes a sequence segment based on the 
frequency of amino acid occurrence as calculated by the two-
sample LOGO program (45). According to this, the positive 
and negative sets are fed by LOGO, and as the result the fre-
quency of each amino acid at each position is calculated based 
on the difference between two sets. Then, the abundance of 20 
types of amino acids in each position is obtained. To generate 
a 24-dimensional feature vector for each 25-residue segment, 
the constructing amino acid frequency at each position (24 
positions in total, as the central residue K is ignored in this 
coding scheme) is selected as final feature value (25).
13. k-gram: A k-gram is simply a pattern of k consecutive 
letters which could be amino acid symbols or nucleic acid 
symbols. Since there are 21 possible letters (20 native and 1 
dummy amino acids) for each position, there are 21k possible 
basic k-grams for each value of k (46). k-gram is a the same 
as BINA described earlier.
14. Enhanced grouped amino acid composition (EGAAC): 
The EGAAC algorithm converts character information of pro-
tein sequences into numerical vectors. It is a powerful feature 
extraction technique applied to the study of bioinformatics, 
including the viral PTM sites (47) and prediction of lysine/k 
malonylation sites (40). Based on the five physicochemical 
characteristics of amino acids, Lee et al. (48) classified 20 
different types of amino acids into five categories including 
aliphatic group (g1: GAVLMI), aromatic group (g2: FYW), 
positive charge group (g3: KRH), negatively charged group 
(g4: DE) and uncharged group (g5: STCPNQ). The calcula-
tion formula is as follows: 

G (m,n) =
H (m,n)

H (n)

g𝜖{A,C,D, … ,Y}

n𝜖 {w1,w2,… ,wL} (10)

where H(g, n) is the number of amino acids in group g within 
the window n, H(n) is the length of the window n (42).
15. Position weight matrix (PWM): To find out how frequently 
each amino acid appears in the sequence; the PWM is calcu-
lated for each category (49). Each sample can be encoded as 
an L-dimensional vector due to the total length of the sample 
fragment.
16. Position weight amino acid composition (PWAA): Shi et al. 
(50) proposed PWAA to retrieve protein sequence information 
in order to prevent loosing sequence information. It efficiently 
collects residual position data near the target position (51). 
Given an amino acid residue xi, i = 1, 2, …, 21, the PWAA 
technique is stated as follows: 

Gi = 1
m (m + 1)

j=m

∑
j=−m

vij( j +
|j|
m

), j = −m,… , m (11)

where m represents the number of upstream or downstream 
amino acids. If xi is P’s jth amino acid, then vij = 1, else vij = 0. 
The PWAA can generate 21-dimensional feature vectors for a 
protein sequence P.

Evolutionary-derived features
1. K-nearest neighbor (KNN) feature: The KNN encoding 
generates features for a given sequence based on its similar-
ity to n samples from both positive and negative sets. For two 
segments S1 = {s1(1), s1(2), …, s1(l)} and S2 = {s2 (1), s2(2), …, 
s2(l)}, the distance Dist (S1, S2) between S1 and S2 is defined 
as follows: 

Dist (S1, S2) =
1 − ∑l

i=1 sim (s1 (i) ,s2 (i))
l

(12)

where l is the length of the segment and sim (s1 (i) ,s2 (i)) mea-
sures the similarity between the amino acids s1 (i)  and s2 (i)
based on the normalized amino acid substitution matrix.
2. Composition of k-spaced amino acid pairs (CKSAAP): The 
prediction of malonylation sites has been successfully accom-
plished using the CKSAAP as an efficient feature encoding 
method (29, 52). In a particular peptide, the occurrence fre-
quencies of the k-spaced amino acid pairs are calculated using 
the CKSAAP encoding, which reveals the information about 
brief linear motifs in sequence fragments. A pair of amino 
acids that are k-spaced apart have two amino acids in them. 
For instance, the 441-dimensional feature vector that repre-
sents the CKSAAP encoding of a peptide for k = 1 is as follows: 

NAxA

NTotal
, NAxC

NTotal
,… , NXxX

NTotal

441
(13)

where x represents any one of 21 amino acids, NTotal repre-
sents the total number of l-spaced amino acid pairs. Here, 
CKSAAP with k = 1, 2, 3 and 4 were combined to encode 
training peptides as 2205-dimensional feature vectors.
3. Position-specific scoring matrices (PSSMs): The evolution 
of protein sequences is caused by changes in any residue, 
additions or deletions of a few residues, as well as gene 
duplication and fusion. The PSSM is widely used in biolog-
ical sequence analysis to motives in nucleotide and amino 
acid sequences (53). The PSSM matrices encode information 
related to the evolutionary conservation of a protein. These 
extended changes have been occurring over time, and many 
of the similarities between the amino acid sequences have 
been eliminated. However, these proteins may contain several 
common characteristics such as common biological functions. 
There are negative and positive scores in the PSSM matrix. 
The negative score means that the provided amino acids are 
substituted less frequently in the arrangement, while the posi-
tive score indicates that the specified amino acids occur more 
frequently. The PSSM matrix in a protein with a sequence 
of length L is a matrix of L × 20 dimensions. Each row of 
the matrix is corresponding to an amino acid in the protein 
sequence and its columns correspond to the 20 amino acids 
in proteins. In this matrix Pij, the probability of the existence 
of the amino acid with the number j at position i from the 
protein is evaluated.

The POSSUM tool (https://possum.erc.monash.edu/server.
jsp) has been utilized for extracting these matrices. POSSUM 
generates PSSM profiles of the submitted sequences by run-
ning the PSI-BLAST web server, wherein the non-redundant 
sequences set existing in the National Center for Biotech-
nology Information database have been used. For this sake, 
the E-value and the number of replications are set to 0.001 
and 3, respectively (54). Based on this feature, S-FPSSM is
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generated to delicately extract evolutionary information (55).
The Filtered PSSM (FPSSM) is created from the PSSM in a 
preprocessing step, where all PSSM negative entries are set 
to zero while other positive elements that are greater than an 
expected value 𝛿 (with a default value of 7) are set to 𝛿. As 
a result, the entries of an FPSSM are all integers between 0 
and 𝛿. When combining two elements during matrix transfor-
mation, this step can aid in removing the negative elements’ 
influence on the positive ones. Based on the FPSSM, the entries 
of the resulting feature vector

S = (S1
(1), …, S20

(1),…, S1
(20),…, S20

(20)) is described as 
follows: 

S(i)
j =

L

∑
k=1

fpk,j
× 𝛿k,j (14)

where L denotes the total number of rows of the FPSSM, fpk, I
denotes the element in the kth row and ith column of FPSSM, 
rk denotes the kth residue in the sequence, and ai denotes the 
ith amino acid of 20 primary amino acids.
4. Term frequency and inverse document frequency (TFIDF): 
To find the TFIDF coefficient, independent calculations for 
each term (TF and IDF) should be made (39). These terms 
are defined as follows:

1. TF(t, d): the number of amino acid t in a protein 
sequence, divided by the size of the protein, namely d.

2. IDF(t): the logarithm of the total number of proteins 
(namely |D|) divided by the number of contents which include 
amino acid t (namely DF(t)). It is calculated as follows: 

IDF (t) = log( |D|
DF (t)

) (15)

Having calculated TF and IDF, TFIDF is calculated as: 

TF − IDF (t, d) = TF (t, d) × IDF (t) (16)

5. Term frequency and category relevancy factor (TFCRF): 
This technique defines two components, positive rela-
tion frequency (PositiveRF) and negative relation frequency 
(NegativeRF) as follows (39):

1. PositiveRF: The ratio of the number of amino acids in a 
protein sequence (ci) that share the same trait (tk) to the total 
number of amino acids in the protein sequence is the factor in 
question. It is determined by: 

PositiveRF (tk,cdi) =
∣D(tk,cj )∣

∣D(cj )∣
(17)

2. NegativeRF: The ratio of the total number of amino acids 
in protein sequences other than ci that share the trait tk to the 
total number of amino acids in protein sequences other than 
ci is the factor in question. It is determined by: 

NegativeRF (tk,ci) =
∑|C|

m=1,m≠j |D(tk,cm )|

∑|C|
m=1,m≠j |D (cm )|

(18)

where |D(cj)| is the number of amino acids in the set D and 
the protein cj that share the characteristic tk, and |D(tk, cj)| is 
the number of amino acids in the protein sequence cj. The cat-
egory relevancy factor value (cr fV alue), taking into account 

the aforementioned formula, is defined as follows: 

cr fV alue (tk,  cj)  =
PositiveRF(tk,cj)

NegativeRF(tk,cj)
(19)

The relevance factor of each category has a direct correla-
tion with PositiveRF and a reversible correlation with Nega-
tiveRF. Consequently, the following formula is the suggested 
weighting for feature tk in protein sequence di: 

Wki  =  log (tf  (tk,  di))cr fV alue (tk,  Cdi)) (20)

log (tf (tk, di) × PositiveRF (tk, cdi )
NegativeRF (tk, cdi ))

) (21)

where the protein sequence di belongs to the category cdi. 
The performance of classification is improved through the 
use of normalization, which reduces the impact of sequence 
length. The weights are restricted to the range (0, 1). The final 
calculation of the TFCRF is as follows: 

Wki = log (tf (tk, di)) × crfV alue (tk, Cdi)) =
log (tf (tk, di) × Positive RF(tk,cdi )

Negative RF(tk,cdi )
) (22)

PCP-based features
1. Pseudo amino acid composition (PseAAC): Chou (56) 
proposed PseAAC as an effective way to encode protein 
sequences. PseAAC preserves some information about the 
sequence order and incorporates some information about the 
PCP of amino acids, which is different from the amino acid 
frequencies. This has led to the application of the PseAAC in 
bioinformatics, like predicting different types of PTMs, pro-
tein subcellular localization and membrane protein types. A 
similar feature has been presented in (57), so we skip the 
detailed description.
2. AAIndex: AAIndex is an amino acid index database with 
various physicochemical and biological properties of amino 
acids (46, 58). The properties include hydrophobicity, polar-
ity, polarizability, solvent/hydration potential, accessibility 
reduction ratio, net charge index of side chains, molecular 
weight, PK-N, PK-C, melting point, optical rotation, entropy 
of formation, heat capacity and absolute entropy. Features 
extracted from AAIndex have been shown to be discrimi-
nating in malonylation site prediction according to previous 
studies (25).
3. Side chain property: To generate this feature, amino acids 
are divided into six categories based on the characteristics of 
their R group: hydrophobic—aliphatic (Ala, Ile, Leu, Met and 
Val), hydrophobic—aromatic (Phe, Trp and Tyr), polar neu-
tral (Asn, Cys, Gln, Ser and Thr), electrically charged—acidic 
(Asp and Glu), electrically charged—basic (Arg, His and Lys) 
and unique amino (Gly and Pro). The six different kinds of 
side chains are represented by a six-dimensional vector using 
one-hot coding or BINA (59).
4. EBAG: Previous studies have established that amino acid 
residues can be classified according to their numerous physi-
cal and chemical characteristics. Based on this notion, we use 
a feature encoding method known as EBAG, which divides 
20 amino acid residues into four groups: hydrophobic, polar, 
acidic and basic. Although some intervals in amino acid 
sequences have no separate physical and chemical features, 
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they can be used to determine whether a site can be modi-
fied or not, and we categorize them in the fifth group denoted 
by ‘X’: C1 group: hydrophobic (A, F, G, I, L, MP, V, W), C2 
group: polar (C, N, Q, S, T, Y), C3 group: acidic (D, E), C4
group: basic (H, K, R), C4 group: intervals (X).
5. BLOSUM62: The amino acid substitution matrix is based 
on the alignment of amino acid sequences. The identity 
between the two peptide sequences does not exceed 62. The 
character information of the protein sequence is converted 
into a numerical vector. It has been widely used in bioinfor-
matics, such as prokaryote lysine/k acetylation sites prediction 
(60) and malonylation site prediction (40). For example, by 
using the BLOSUM62 (60) feature extraction algorithm, the 
fragment sequence with a window length of 25 amino acids 
can be encoded as a 500-dimensional feature vector.
6. Encoding based on grouped weight (EBGW): EBGW 
groups 20 amino acids into seven groups according to their 
hydrophobicity and charge characteristics which has also been 
recently used for predicting malonylation sites (31). A 25-
dimensional array Si, I = 1, 2, 3) of the same segmental element 
is produced for each group Hi, I = 1; 2; 3). The element in the 
array will be set to 1 if the corresponding amino acid at that 
position belongs to the Hi group; otherwise, it will be set to 
0. Each array then will be broken up into smaller arrays (J-
ones), which stand for D(j). Len (D(j)) is used to calculate this 
value by cutting the main Si from the first window which is 
determined using the following equation: 

Len (D (j)) = int j*L
J

j = 1, 2,… , J L = length of segments
(23)

A vector with length J based on its subarrays should be 
defined for each group of Hi, in which the jth element of Xi(j)
is determined using the following equation: 

Len (D (j)) = Xj
i =

∑j D (j)

Len (D (j))
(24)

7. Z-scales: It is an encoding scheme wherein each amino acid 
is characterized by five physicochemical descriptor variables, 
introduced and developed by Sandberg et al. in (61).

Structure-based features
1. Accessible surface area (ASA): ASA is a measurement of 

an amino acid’s solvent accessibility. It discloses crucial 
details regarding protein structure and interactions with 
other macromolecules. Additionally, it describes which 
amino acids are located near the surface and have a 
higher likelihood of undergoing PTMs (26, 62). Run-
ning SPIDER2 on each protein sequence yields the final 
ASA value.

2. Secondary structure (SS): The proteins’ local 3D struc-
ture is determined by the secondary structure. It is 
made up of three regional parts: a coil, a strand and 
a helix. Each amino acid has the opportunity to con-
struct one of these three local configurations due to 
the predicted secondary structure. With the help of this 
knowledge, it is possible to identify which amino acids 
are more organized and which are more likely to inter-
act with other macromolecules (26, 62). The projected 
secondary structure by SPIDER2 is an L × 3-dimension 
matrix, where L stands for the protein length and the 

columns are labeled as coil, strand and helix (pc, pe and 
ph, respectively).

3. Half-sphere exposure (HSE): An indicator of an amino 
acid’s level of surface exposure on a protein is the HSE. 
It counts how many C∝ neighbors are contained within 
a half-sphere of a specified radius. An amino acid is 
more exposed the less C∝ neighbors it has. The posi-
tion of the plane that separates the sphere with a center 
C∝ atom and radius ‘R’ is shown by the dotted line. 
Part of the protein’s C∝ backbone is represented by the 
thick black lines (63).

4. Local backbone angles: Proteins’ local structures can be 
represented by their local backbone angles. Local back-
bone angles provide us with continuous information 
about the local structure of proteins, in contrast to sec-
ondary structure, which offers us an idea about a local 
configuration with respect to constructing coil, strand 
or helix forms. In other words, information on the inter-
action of local amino acids is continuously provided by 
the backbone torsion angle. SPIDER2 generates prob-
ability values for the following four local backbone 
angles 𝜃, 𝜏, 𝜒 and Φ, which are thoroughly discussed 
in their original research (62, 64, 65).

Embedded algorithms in ML-based prediction 
models
To get the most benefits from the extracted feature data and 
for the sake of prediction of malonylation sites, ML methods 
as a subfield of artificial intelligence must be applied. With 
such methods, we are able to develop algorithms for learn-
ing from and making prediction based on the constructed 
statistical models. There are different categories in ML meth-
ods wherein the supervised learning is a learning type which 
the algorithm is trained based on a labeled dataset. Infor-
mally speaking, a function which predicts the output label for 
the new data based on the collection of input-label pairs is 
learned. There are several methods categorized as the super-
vised learning methods in the form of learning probability 
models. The models can be primarily categorized as Bayesian 
networks, instance-based learning, neural networks, kernel 
machines and hidden-variables-based learning (66). How-
ever, the boarder lines among the categories are not too 
sharp. In Bayesian learning techniques, the prediction is made 
based on the probability of each hypothesis throughout their 
probabilities. The decision on the class ownership is made 
through maximizing a posteriori probability. In this concept, 
the hypothesis is quantified by its prior (a priori) probabil-
ity and the likelihood of the data under each hypothesis is 
calculated by the conditional probability of the test sample 
when the training data are given (67). Naive Bayesian and lin-
ear Gaussian models are the main probability models in this 
category.

The second category of the supervised learning probabil-
ity model is the instance-based learning. In contrast to the 
aforementioned model wherein the simple assumptions on the 
training data distribution are supposed, in the instant-based 
model a model can be highly complex in terms of statistical 
distribution. KNN and kernel models are prominent examples 
in this category (66).

The third category deals with neural networks. The concept 
of an artificial neural network (ANN) has been introduced 
in 1943 by Warren McCulloch Walter Pits (68), which was a 
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trigger and initial points for the future development and archi-
tectures. A neural network architecture consists of neurons, 
links and weights. An architecture corresponding to a train-
ing sample each of feature size n consists of n input neurons 
(nodes). The constructing neurons are connected directly to 
each other, and they are propagating the activation function 
effects between the neurons based on the associated weights. 
Intrinsic features of a neural network borrowed from the 
human brain logical reasoning model like parallelism, adapt-
ability, generalization, etc., make it as an efficient and favored 
tool in performing classification and regression tasks. Feed 
forward neural networks and feedback/recurrent neural net-
works (RNNs) are two main network types in the category of 
neural networks. With the rapid and vast usage of neural net-
works and conceptualized on top of the ANN, DL was intro-
duced in 2006 (69, 70). The pipeline of a DL model is princi-
pally similar to an ML model; however, in contrast to the ML 
modeling, feature engineering is elaborated by automating the 
feature extraction in the DL model. DL techniques are divided 
into three main categories including discriminative networks 
(e.g. convolutional neural networks, multilayer perceptron, 
and RNN), generative networks (e.g. generative adversarial 
networks and auto encoders) and hybrid models (e.g. genera-
tive adversarial networks plus auto encoders). DL technology 
utilizes multiple layers to represent the abstractions of data to 
build highly non-linear computational model (69). One of the 
advantages of the DL models is their speed during the testing 
in comparison with the classical ML methods. However, the 
training time in an associated DL model is long due to the big 
number of learning parameters. An important feature associ-
ated with a DL model is the interpretability concept. In fact, 
as the feature extraction is automated in a DL model, inter-
preting the results obtained as the output of the DL model is 
necessary to be understandable by the humans.

The forth category of learning probability models includes 
kernel machines (66). The concept of kernel machines whose 
main representative is support vector machine (SVM) dates 
back to Aizerman et al. (71) with introducing of the ker-
nel tricks. However, the maturity in the kernel theory has 
appeared about three decades later by Vapnik et al. (72) in 
90s. The idea of kernel machines deals with the requirement to 
the developing of non-linear methods for classifying the data 
rather than linear techniques. By utilizing a positive definite 
kernel function corresponding with a similarity function (e.g. 
dot product) in the higher-dimensional feature space, we will 
perform linear calculation. However, our calculations are per-
formed in the source space instead of the higher-dimensional 
feature space (73). In the other terms, with such a method 
so called trick, a linear classifier is utilized to solve non-linear 
classification problems. In fact, a kernel function is a mapping 
applied on the full data to transfer those from a non-linear 
separable space to a higher-dimensional but linearly separable 
space.

Finally, the last category of probability learning model 
is dealing with learning with the hidden variables. Hidden 
variables play a pillar role in many real problems in differ-
ent domains including biology, economics, medical diagnostic 
systems, etc. For example, a hidden regulating mechanism can 
be a sign of complex biological systems (74). In another exam-
ple, some predisposing factors in a medical diagnostic system 
cause an outcome like a disease represented by some symp-
toms. Such an outcome is considered as a hidden variable 
(66), so a hidden variable plays the role of an interface to 

transfer the information between the network parts (74). In 
fact, the lack of hidden variables increases the size of required 
model parameters significantly. To learn the hidden variables, 
an algorithm named expectation maximization is a generic 
solution. Hidden Markov models and Bayesian networks are 
the main areas of application of learning hidden variables 
(66, 74–76).

Model evaluation
The classification models reviewed in this study have been 
evaluated by model evaluation parameters, mainly based on 
confusion matrix elements as true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN) values. TP 
indicates the experimentally validated malonylation sites cor-
rectly predicted by the prediction method, and TN represents 
the non-malonylation sites correctly predicted. FP denotes the 
non-malonylation sites incorrectly predicted as malynolated 
sites, and finally, FN indicates the experimentally validated 
malonylation sites incorrectly predicted non-malonylation 
sites. The classification performance is evaluated by accuracy 
(ACC), sensitivity (SN), specificity (SP) and Kappa indica-
tors. Furthermore, the receiver operating characteristic (ROC) 
curve has been extracted in some studies. The ROC curve is 
a plot representing the trade-off between the TP rate or sensi-
tivity and the FP rate or 1 − specificity. A high area under the 
curve (AUC) in an ROC curve indicates high discriminating 
capability of the model in distinguishing between the binary 
classes. The definition of the aforementioned classification 
parameters is as follows:
Accuracy: It is the percentage of the correct predictions calcu-
lated as below. 

Accuracy = TN + TP
TN + FP + TP + FN

× 100 (25)

Sensitivity (recall): It indicates the percentage of malonylation 
sites that have been predicted correctly. 

Sensitivity = TP
TP + FN

× 100 (26)

Specificity: It shows the percentage of non-malonylation sites 
that have been predicted correctly as non-malonylation. 

Specificity = TN
TN + FP

× 100 (27)

Kappa (k): Kappa or Cohen’s Kappa quantifies the agreement 
between two raters in the classification task. The formula for 
calculating Kappa is as follows: 

k = 2(TP × TN − FN × FP)
(TP + FP) (FP + TN) + (TP + FN) (FN + TN)

(28)

Except for the ROC curve, precision–recall (PR) curves for 
the extracted results drawing and utilized in some works. The 
PR curve represents the trade-off between the precision and 
recall (TP rate).
Precision: It indicates the positive predictive value and is 
calculated as follows: 

Precision = TF
TP + FP

× 100 (29)

The main indicator of the PR curve is the AUC in which the 
high value represents both high measures. Also, to evaluate the 
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balance between precision and recall, a score called F1-score 
is used which is defined as follows.
F1-score: It calculates the harmonic mean between precision 
and recall as follows: 

F1 − score = 2 * Precision * Recall
Precision + Recall

(30)

Finally, Mathew correlation coefficient (MCC), which is a 
preferred measure in comparison of F1-score and accuracy, is 
calculated as follows.
MCC: It summarizes the information of the corresponding 
confusion matrix. 

MCC = TN.TP − FN.FP
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(31)

Approaches for prediction of lysine 
malonylation sites in protein sequences
Approaches based on the feature encoding 
methods and/or traditional ML models
In this subsection, approaches based on the classical ML 
methods utilizing different feature categories are mentioned. 
The approaches are shortly described based on their build-
ing blocks including feature engineering part and training 
classifiers as well as reported classification parameters.

As one of the earliest works appeared in the literature, Xu 
et al. (46) developed ‘Mal-Lys’ to predict malonylation sites 
based on protein sequences. Mal-Lys utilizes three types of fea-
tures: sequence order information (k-grams), position-specific 
amino acid propensity (PSAAP) and PCP. These features are 
utilized to construct the model. The ‘minimum redundancy 
maximum replication’ approach is employed to identify the 
most significant features. The classification model has been 
trained using SVM algorithm, and the Mal-Lys prediction 
accuracy and the robustness are assessed using leave-one-
out cross-validation (LOOCV), 6-, 8- and 10-fold cross-
validations (CVs). The reported AUC is 0.81, whereas the 
AUC values for the 6-, 8- and 10-fold CV are similar. Using 
experimental data from the UniProt database, the proposed 
model has been validated. Finally, a tool has been developed 
on the top of this approach as one of the earliest tools.

The proposed method in [77] utilizes SVM to predict mal-
onyolation sites in protein sequences by combining primary 
sequences and evolutionary feature vectors. The proposed 
method is called iLMS (identification of lysine malonylation 
sites) and uses features like pKSAAP, AAIndex, PSSM and 
DPC followed by information gain (IG) to reduce the dimen-
sion of the feature space. The classification parameters have 
been extracted in both CV (4,6,8,10-fold) and independent 
test setting. The best achieved accuracy is 0.807 correspond-
ing to a 10-fold CV testing the mouse dataset.In another 
work, Du et al. [78], the authors utilized three categories of 
features including flanking primary sequences, conservation 
features and functional features to predict the lysine acyla-
tion, including acetylation, malonylation, succinylation, and 
glutarylation sites in a protein sequence. To feed the classi-
fier, the features have been transformed into the numerical 
vectors through different coding methods. The SVM classifier 
has been trained by the extracted feature numerical vector. 
The best performance has been achieved in the presence of all 

features by AUC-ROC value of 0.93 for prediction of malony-
lation sites. The authors have experimented different feature 
grouping to estimate the effect of each feature category.

Wang et al. (31) have proposed an SVM-based classifier, 
Malo-Pred, for the prediction of Kmal sites in the proteome of 
three species (i.e. Escherichia coli, Mus musculus and Homo 
sapiens). The proposed model utilized five features including 
AAC, EBGW, BINA, KNN and PSSM. After evaluating the 
corresponding information gains, the most significant features 
were selected. Based on the extracted results, it was found that 
the KNN scores effectively capture the evolutionary similar-
ity information around malonylation sites and demonstrate 
the best performance among all five features. The assessment 
has been performed through 10-fold CV and independent test 
in which accuracy scores of 0.85, 0.82 and 0.67 for M. mus-
culus, E. coli and H. sapiens have been achieved, respectively. 
This work also confirms that different species have different 
biological processes and pathways, as well as unique sequence 
preferences for their enzymes, making it suitable for training 
with and predicting Kmal sites for individual species.

The presented work in (77) used SVM models to pre-
dict malonylation sites by using PseACC encoding. On a 
relatively small scale, they tested their method and achieved 
acceptable results. LOOCV and independent test have been 
conducted to assess the prediction performance of the clas-
sification models. They also used SVM, KNN and random 
forest (RF) classifiers for the malonylation site prediction. 
The LOOCV test on the training dataset reached an accu-
racy of 0.77, and the independent test on the testing dataset 
got 0.88. In addition, Taherzadeh et al. (26) used the mouse 
data and sequence-based and structure-based features to train 
an SVM-based predictor termed ‘SPRINT-Mal’ to predict 
malonylation sites in H. sapiens, M. musculus and Saccha-
ropolyspora Erythraea, respectively. The model shows robust 
performance in predicting mouse malonylation sites as well. 
The 10-fold CV and the independent test have been used to 
assess the accuracy wherein the accuracy of 0.80 and 0.90 has 
been achieved, respectively. They evaluated the model with 
human data showing a comparable performance. Also, it has 
been observed that the best performance is achieved when all 
feature types including evolutionary information, PCP as well 
as HSE features are involved.

In a recent work presented by Zhang et al. (25), an ensem-
ble based model utilizing 11 types of feature encoding meth-
ods has been designed. In the latter study, by using gain ratio 
and the combinations of feature sets, optimized feature sets 
have been shown to provide the best performance for three 
species. Concerning to this matter, the KNN based on evolu-
tionary information, LOGO based on sequence information 
and AAIndex based on PCP properties have shown to be the 
top three important features resulting in the best performance. 
In benchmark tests across the three species, RF, SVM and 
light gradient boosting machine (LightGBM) models perform 
best, and LightGBM outperformed all other ML techniques 
trained on humans’ data sets. Also, it has been shown that the 
improved performance is achieved through optimal ensemble 
models in an independent test setting scenario across different 
dataset species.

In the work introduced in (62), H. sapiens and M. mus-
culus species data have been used to extract structural and 
evolutionary-based features. A predictor tool ‘SEMal’ based 
on RF, rotation forest (RoF), SVM and Adaboost has been fed 
by the latter feature sets. In this approach, SS, ASA, PSSM and 
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Local backbone angles have been extracted as feature sets. To 
assess the prediction capability of the model, a 10-fold CV 
technique has been followed. SEMal shows sensitivity (0.94 
and 0.89) and accuracy (0.94 and 0.91) for H. sapiens and M. 
musculus species, respectively. It is worth mentioning that the 
combination of both structural and evolutionary-based fea-
tures, mainly PSSM and SPD3, results in a better accuracy 
than the single feature-based models. In another work pre-
sented by Ghanbari Sorkhi et al. (39), they have combined 
seven different features using the Fisher’s score (F-score), to 
select the best combination. They have tried several classifiers 
wherein the extreme gradient boosting (XGBoost) algorithm 
outperforms the others in terms of prediction accuracy as 
reported (39). In this approach, EAAC, EGAAC, DDE, PKA, 
TFIDF, TFCRF and PSSM have been used as feature elements. 
According to the reported experiments on different feature 
sets, the feature TFCRF provides the best accuracy among 
other individual features when it is used as a single feature 
to feed the classifiers. The classifiers include XGBoost, SVM, 
RF and deep neural network (DNN). The XGBoost method 
outperforms other existing ML methods with an accuracy of 
0.95 through a 5-fold CV setting.

Two computational methods have been presented in (78) 
named RF-MaloSite and DL-MaloSite, for predicting mal-
onylation sites based on RF and DL models, respectively. 
The primary raw amino acid sequences are input data to the 
DL-MaloSite, while the RF-MaloSite scheme makes use of 
a wide range of biochemical, PCP and sequence-based fea-
tures. Utilizing a 10-fold CV and an independent test set, 
RF-MaloSite demonstrated an accuracy of 0.71 and 0.70, 
respectively. According to a 10-fold CV and an independent 
set, DL-MaloSite results in an accuracy of 0.75 and 0.74, 
respectively. The presented tool augmented on this approach 
either has been trained on the data on window size of 29. Also, 
the first ranked feature in terms of importance is reported 
as PseAAC. In a different study, Ahmad et al. (79) used 
the feature extraction method PseAAC to create a new pre-
dictor called Mal-Light. The authors presented a bi-peptide 
approach and the PSSM to extract local evolutionary-based 
information according to the interactions of nearby amino 
acids in order to construct this model.

To predict malonylation sites, they then used LightGBM, 
a more sophisticated method. For H. sapiens and M. mus-
culus proteins, using Mal-Light, accuracy has been reported 
to be 0.86 and 0.79, respectively. The importance of differ-
ent features in an individual base has been plotted as well. In 
another work named IMKPse presented in (80), the general 
PseAAC as the classification features is used and the flexible 
neural tree as the classification model is engaged for the clas-
sification. In three species, including E. coli, M. musculus and 
H. sapiens, IMKPse achieved an accuracy of 0.95, 0.92 and 
0.93 while tested on three data subsets in the test data set. 
In this work, a comprehensive analysis of the combination 
of different feature sets as well as their importance has been 
presented.

Li et al. (59) suggested a method based on RF to create pre-
diction models for each encoding scheme in order to identify 
protein malonylation sites. For the construction of the train 
set, the authors utilized the PSSM, residue identity, side chain 
property, AAIndex and PCP properties features. Each model 
performance has been assessed using 10-fold CV. The pro-
posed spatial feature, which obtained an accuracy of 0.60, 
outperforms the rest. In the presented approach in (29), a 

trained SVM classifier followed by principal component anal-
ysis (PCA) is used for the detection of malonylation sites. The 
classifier is fed by the feature vector extracted from BINA, 
PCP properties and composition of k-spaced acid pairs. In this 
approach, different combinations of CKSAAP features have 
been considered in order to get the valid CKSAAP feature 
values. To reduce the feature vector size, the PCA has been 
applied finally. The model has been trained on the labeled sites 
with a window length of 17 and tested on the 5-fold CV as 
well as independent set test settings. The achieved AUC-ROC 
for both settings is 0.96 and 0.90, respectively. Also, a tool has 
been developed based on the aforementioned model, which 
generates accuracy and plots the ROC as the examples of clas-
sification indicators in two different CV and independent test 
cases.

Approaches based on DL
While the aforementioned approaches are based on the clas-
sical ML algorithms, in the approaches based on end-to-end 
DL, the raw data sequences are directly used for the training 
purposes. In feature-based deep networks, however, the fea-
tures are used as the input data to the network. As one of the 
works using a holistic set of features, Chen et al. (81) have 
developed a DL-based algorithm and extracted features via 
a novel encoding method and PCP-based information. Using 
long short-term memory (LSTM) and RF classifiers, they 
built their classifier to predict malonylation sites. The encod-
ing schemes tested include BLOSUM62, CKSAAP, binary, 
Z-scales, AAIndex, AAC and EAAC that were developed in 
this study. The performance of each predictor was assessed 
by a 10-fold CV and an independent test. Among these dif-
ferent encoding schemes, the EAAC encoding performed the 
best in the prediction of Kmal malonylation sites for 10-
fold CV and the independent test, in terms of ACC, SN and 
SP, which are 88.13, 41.70 and 90.99 and 8887, 43.79 and 
90.72, respectively. In the work presented in (33), convo-
lutional neural networks (CNNs) based on the composition 
of physicochemical attributes, evolutional information, and 
sequential features that are able to identify mammals’ protein 
malonylation sites have been structured. The feature analysis 
shows the superiority of the PAAC feature for plant species 
and AAIndex for mammalian species, respectively, in terms of 
accuracy feeding RF and CNN classifiers. The best-achieved 
accuracy in both 10-fold CV and independent test cases are 
0.764 and 0.866, respectively. In this approach, a tool has 
been introduced as well (82) called ‘Kmalo’. The developed 
tool assumes the input data in the form of fasta files or raw 
protein sequences and the output results which include prob-
ability measures as the classification indicator. The input data 
are protein sequences belonging to either mammalian or plant 
species.

In the work presented in (83), a CNN has been employed to 
identify the potential sites resulting in an approach called K 
net. The classification scheme makes use of three main fea-
tures including EAAC, EBPR and EAAC. According to the 
results reported by the authors, K net obtained the AUC-ROC 
value of 0.79 and MCC value of 0.24, respectively. The results 
have been shown the superiority of the DL-based scheme 
(CNN) against traditional classifiers like RF, SVM, KNN and 
ANN. The utilized deep architecture consists of seven layers 
including two convolutional layers, a pooling layer, a con-
volutional layer, a pooling layer and a flatten layer followed 
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by a fully connected layer. Also, to overcome the effects of 
imbalance data set, the authors have introduced a new ver-
ification method called split to equal validation wherein the 
output classification parameters are adjusted according to 
the ratio of the major class size to the minor class size. In 
another approach presented in (84), the authors utilized a 
DL architecture consisting of gated recurrent units (GRUs) 
and the DNN to predict the malonylation sites in the pro-
tein sequences. The architecture is called GRUD wherein the 
data is filtered through the GRU part, while the classification 
task is performed in the DNN part. The utilized architec-
ture employs features including BE, BLOSUM62, BP, DC, 
EAAC, EBGW and PWAA resulting to a feature vector of size 
of 2336 elements. In this work, a method called NearMiss-
2 (85) is used to handle the data size imbalance problem, 
which is a common challenge in the malonylation prediction 
problems. The achieved results reported by the authors intro-
ducing the GRUD architecture are ACC value 0.96, MCC 
value 0.93 and AUC-ROC value 0.99, respectively. Also, the 
authors showed that their introduced method outperforms 
the traditional ML models and the deep network architec-
tures based on the DNN, LSTM and CNN. According to the 
analysis presented in the paper, the features encoding methods 
BLOSUM62 and DC show result in a higher accuracy than the 
other employed features like EBGW. However, the results cor-
responding to the combined features are significantly higher 
than the ones corresponding to the individual feature (84). 
To select the optimal features, Wang et al. (40) have used 
eight different models based on seven types of features con-
taining EAAC, EGAAC, BINA, DDE, KNN, AAIndex and 
BLOSUM62. The proposed DL architecture is named Deep-
Mal (40). The presented architecture consists of eight layers 
excluding the input layer. The achieved accuracy of the deep 
architecture is 0.9301 with the MCC value 0.9513 in the case 
of 10-fold CV. Similar to the major prediction models, the 
fusion of different features improves the accuracy results as 
expected. Finally, the proposed approach in (81) utilized a 
DL based on the LSTM to predict the malonylation sites in 
the protein sequences of mammalian species. The deep archi-
tecture consists of five layers including input layer, embedding 
layer, LSTM, fully connected layer and the single neuron out-
put layer. The employed feature sets include EAAC, AAIndex 
and BINA, which have been extracted from the lysine-centered 
sequences of the lengths from 7 to 35. The evaluation method 
was 10-fold CV and the optimal length resulting the best 
AUC-ROC is 31. A tool has been developed by integrating 
the described deep architecture and a RF classifier. The best-
achieved result corresponding to the integrated classifiers in 
terms of the AUC-ROC is 0.827. Table 1 summarizes the 
information described as the aforementioned works accord-
ing to the following criteria: (i) utilized features (if applicable), 
(ii) detailed reported performance in terms of classification 
parameters, (iii) window size, (iv) sample size (P stands for the 
number of positive samples and N for the number of negative 
samples) and (v) utilized classifier(s). 

Analyzing and comparing the existing tools
Shortlisting and describing the tools
To review and analyze the existing tools predicting the mal-
onylation sites, the tools that have been developed and/or 
augmented on top of the surveyed approaches introduced in 

the latter section are shortlisted. The selection criteria were 
on of the following: (i) availability of the tool interface in the 
framework of an application or web application, (ii) avail-
ability of the source code, (iii) clear description of the tools 
and embedded models and (iv) clear description of the train-
ing dataset. However, there were some tools wherein either 
the web-page address was not accessible or the source code 
was not available. In the latter cases, we have implemented 
the tool models as described in the corresponding manuscript. 
Also, we have recognized that in some implementations coded 
by the tool developers, there are some errors made resulted 
in a not so reliable classification performance. For example, 
in the implementation of the schemes proposed in (29, 40) 
in the corresponding code repositories, the developers have 
scaled the data before splitting it into train and test sets which 
cause information leakage between two sets trivially. In such 
cases, the models have been re-implemented by us to extract 
the reliable results. It is worth mentioning that the description 
of the embedded classification models as well as the prediction 
evaluation has been fully presented in Section 4. Finally, the 
following tools have been shortlisted:

1. Mal-Lys (46): The tool Mal-Lys has been implemented in 
JAVA and developed as a web application. The tool is accept-
ing as input data a bunch of protein sequences in a fasta 
format and outputs the results in a tabular format according 
to the CV evaluation model. The corresponding embedded 
prediction model is the SVM. The tool is available in (86), 
however, according to the experiments conducted, and it 
detects only negative sites and does not show any sensitivity 
to the positive malonylation sites.

2. Mal-Prec (29): Mal-Prec has been implemented in MAT-
LAB and has a similar input/output format as Mal-Lys (46). 
The embedded classification model is also the SVM; however, 
the dimension reduction is performed using PCA to reduce the 
feature dimensions.

3. DeepMal (40): DeepMal has been implemented using 
Python 3.6 and MATLAB14a and using the deep network 
architecture as well as XGBoost as its classification models. 
The tool does not have a web interface. The input data are in 
the form of fasta format to be used to extract and encode the 
feature values feeding the classifiers. The output of DeepMal 
tool is all classification parameters as well as the ROC curve.

4. SEMal (62): SEMal is presented via a web interface 
and is able to process both PSSM and SPD3 features as input 
data. The classification models used in the tool are RF, RoF, 
SVM and Adaboost. According to the source code repository 
(87), the tool generates all the classification parameters as well 
as ROC and PR curves. However, the tool processing server 
seems not responding to the submitted job through its web 
interface (88), and the source code has been used to reproduce 
the results.

5. LEMP (81): LEMP as another tool in the prediction of 
malonylation sites has been developed based on the prediction 
models presented in (81). The embedded prediction model in 
the LEMP is a DL network based on the LSTM and RF classi-
fier. The web interface of the tool was not accessible during the 
manuscript preparation, and the model has been implemented 
for the sake of result generation and comparison.

6. Mal-Light (79): The presented approach as Mal-Light 
(79) embedding a lightGBM classifier does not have any 
launched web interface, and also the source code is not 
available, so the model has been implemented individually.
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7. Kmal-sp (25): Kmal-sp is a web interface tool wherein 
several classifiers including RF, SVM, KNN, logistic regression 
(LR) and Light Gradient Boosting Machine (LGB) are embed-
ded in order to identify the malonylation sites in the input 
fasta files. As the corresponding web server was not accessible 
during the manuscript preparation time, the model has been 
implemented accordingly.

8. MaloPred (31): MaloPred is another online prediction 
tool whose integrated model is based on the SVM. Since 
the web server was not accessible, the approach has been 
implemented to generate the comparison results as well.

9. kmalo (82): Finally, kmalo is an online tool, which calcu-
lates the class ownership probability of the detected malony-
lation sites. The tool always generates the same results based 
on the various input data, so the approach has been imple-
mented independently from the tool and the corresponding 
results have been extracted.

Comparison of the tools
To compare the performance of the shortlisted tools and their 
embedded models, we have collected experimentally approved 
malonylation sites of proteins from the dbPTM database 
(89). The procedure corresponding to the data extraction and 
analysis is as follows.

1. Data extraction for training and testing: The data have 
been extracted from the 2019-dbPTM and 2022-dbPTM 
databases. In this study, we have collected 3316 malonylation 
proteins with 8731 positive sites from 2019-dbPTM for the 
sake of training. Also, we have extracted 677 new and unique 
malonylation proteins with 678 positive sites of the 2022-
dbPTM database for the testing purpose of our proposed 
model as well as existing tools for predicting malonylation 
sites.

2. Homology reduction: The CD-HIT program has been 
utilized in order to reduce the homology and to filter out sim-
ilar sequences (90) (According to different PTMs prediction 
studies (6), we have removed redundant sequences with the 
threshold equal to or more than 40% similarity). As the result, 
a sample of 2107 protein sequences with 4555 positive sites 
for the training dataset and 639 proteins with 640 positive 
sites for the testing dataset has been extracted by the CD-HIT.

3. Sample labeling: The dataset is labeled according to 
the approved malonylation sites in the corresponding pro-
tein sequence. The negative sites indicate lysine/k amino acids, 
which do not have a connection with malonyl-CoA. In fact, 
negative data are a collection of K amino acids that lack mal-
onyl groups and are considered as non-malonylation sites or 
negative samples.

The rest are considered as positive sites.

4. Removing the trimmed sequences: Several positive and 
negative sites have been found at the beginning and end of 
the sequenced proteins which are not symmetric with respect 
to the central lysine, so they cannot be processed as the sym-
metric sequences. Thus, due to the small volume of such rare 
samples, these sites have been deleted from the positive and 
negative datasets.

5. Sample balancing: As the negative sample size is intrinsi-
cally larger than the positive sample size, it is under-sampled 
to convert the sample set to a balance dataset.

6. k-mers fragment extraction: Using a (2n + 1, with n rang-
ing from 3 to 17)-mers window size, fragmented sequences 
centered on changed sites with n left-hand and n right-hand 
embedding amino acids have been extracted from both posi-
tive and negative sequences.

All of the tools have been tested on the independent test 
data sets. The tools have been trained on the extracted data 
wherein a balance set of size 8442 has been used as the train 
set, while the balance test set is of size 1136 samples. The 
tools have been examined on 11 various window sizes (rang-
ing from 7 to 35). For a window size of 7, for example, the 
target amino acids, lys = K residue, is placed on the center of 
the window, three amino acid residues upstream and three 
amino acid residues downstream. However, the parameters of 
the comparing tools have been set according to the recommen-
dations (optimal classifier, optimal window size,...) specified 
(if any) in their corresponding manuscripts. The comparison 
results are described in Table 2 as follows.

According to Table 2, the tool integrated as LEMP outper-
forms the rest in terms of almost all classification parameters. 
Among these parameters, the ACC is slightly better than the 
corresponding parameter of DeepMal (DL) ranked the sec-
ond. However, the MCC of LEMP does have a comparing 
value with the all others.

Experimental results and improvement
The choice of the prediction models and classifiers to assess 
the discriminating capability of the features experimentally as 
well as the prediction capability of the models, the extracted 
data described in the latter section, have been utilized sub-
jected to several ML and DL models. All selected models 
are feature-based whom the processed feature vectors are fed 
into except for the hybrid model wherein both features vec-
tor as well as raw sequence data are utilized. The finalized 
selected models are from RF, optimized gradient boosting fam-
ily (XGBoost), statistical learner classifier (SVM and KNN) 
and DNN categories. The selection criteria are based on wide 
experimental results and literature review and the evolution 
pipeline of decision tree-based approaches:

Table 2. Comparison of the performance results of online tools for the prediction of malonylation sites

Tool ACC MCC Kappa SN SP F1 Web server/source code

Mal-Prec (29) 0.58 0.16 0.16 0.60 0.55 0.59 https://github.com/flyinsky6/Mal-Prec
DeepMal (DL) (40) 0.62 0.27 0.27 0.67 0.60 0.65 https://github.com/QUST-AIBBDRC/DeepMal/
DeepMal (XGB) (40) 0.73 0.46 0.46 0.80 0.66 0.75 https://github.com/QUST-AIBBDRC/DeepMal/
SEMal (62) 0.55 0.10 0.10 0.58 0.51 0.56 https://brl.uiu.ac.bd/SEMal/
LEMP (81) 0.74 0.50 0.48 0.85 0.63 0.77 http://www.bioinfogo.org/lemp (Not accessible)
Mal-Light (79) 0.60 0.21 0.21 0.70 0.50 0.64 https://brl.uiu.ac.bd/MalLight/
Kmal-sp (25) 0.67 0.34 0.33 0.77 0.56 0.70 http://kmalsp.erc.monash.edu/ (not accessible)
MaloPred (31) 0.71 0.42 0.42 0.84 0.60 0.72 http://bioinfo.ncu.edu.cn/MaloPred.aspx (not accessible)
kmalo (82) 0.70 0.41 0.40 0.78 0.62 0.72 http://fdblab.csie.ncu.edu.tw/kmalo/
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RF is the method based on an ensemble model wherein 
the outputs of decision trees from the subsets of selected fea-
tures are aggregated into the final model through majority 
vote mechanism. It has been introduced by Leo Breiman in 
2001 based on the concept of bagging (bootstrap aggregating) 
methods. This bagging-based algorithm works for both clas-
sification and regression problems and also performs well for 
both categorical and numerical variables. Its accuracy, resis-
tance against overfitting as well as its robustness with respect 
to various data types make it one of the most successfully used 
algorithms in the ML applications. Optimized gradient boost-
ing is of type gradient-based decision tree algorithms with 
several implementations and extensions (25).

XGBoost nowadays is applied a lot aiming at increas-
ing computational performance (speed) of the gradient-based 
boosted decision trees as well as getting the benefits from 
multiple learners instead of just one individual learner. The 
XGBoost algorithm is the fastest algorithm among the ones in 
gradient-based boosting algorithms XGBoost has been intro-
duced in 2016 in (91). The precedence of the XGBoost is 
achieved through parallelization, tree pruning and hardware 
resource optimization. The XGBoost algorithm is able to 
apply regularization techniques (e.g. L1 and L2) to avoid over-
fitting through training. Also the algorithm is very powerful 
in training the sparse data due to the existence of missing 
values for example. In fact, the XGBoost handles the sparse 
data through its proposed tree learning algorithm by mak-
ing the algorithm aware of the sparsity nature of the data 
(91). For this sake, the instance containing the missing value 
in the sparse matrix is classified into a predetermined added 
default choice in each tree node. The corresponding choice is 
learned from the non-missing data which trivially improves 
the efficiency of the algorithm by visiting just the non-missing 
elements (91). One of the main important characteristics of 
the XGBoosting algorithm is its capability in managing (opti-
mizing) the memory space at the presence of big sample size 
data.

SVM is one of the commonly used classical ML algorithms 
in both classification and regression problems. The SVM con-
structs a decision boundary with a maximum margin for 
separating linear separable data or by pushing the data to 
a higher-dimensional space throughout kernel functions for 
making them separable. The wide applicability of SVM in 
both linear and non-linear classification/regression problems 
and their resistance against overfitting problem make it one 
of the most successful general-purposed ML algorithms.

A KNN algorithm is an ML algorithm that works also both 
for classification and regression problems. The algorithm finds 
the k examples which are nearest to the test example xi prin-
cipally based on the majority vote of the encompassed labeled 
samples, so the value of k must be chosen as an odd number. 
For the sake of regression, however, the mean or median of 
the value of k will be taken into account. The distance is also 
quantified by any of the several metric functions.

The structures of deep networks are traced back to ANNs, 
which have been around for many decades gaining popularity 
from 1960s (92). An ANN can be considered as a non-linear 
model of neurons inspired from animal or human brain bio-
logical networks for example. The building blocks of an ANN 
are its neurons wherein the classification/regression task is 
performed through passing the feature data through the net-
work architecture including input, hidden and output layers 

trained with the labels data. They have special advantages 
over other classifiers like the ability to learn the complex pat-
tern, generalization capability and the robustness with respect 
to the noisy data. The number of hidden layers, the number 
of neurons in each layer, the choice of activation function and 
the learning rate are important parameters which normally 
affect on the performance of the network. The DNN models 
structured as multilayer architecture and furnished with mega 
parameters are equipped with rich libraries recently (93). Such 
libraries and the concrete basis of these networks provide a 
potential in solving highly complex classification and regres-
sion problems in various fields. There are many parameters 
involved in a DNN model including number of layers (L), 
total number of neurons (N), bias value (B), the choice of 
activation function, learning rate and the choice of optimizer 
and loss functions. Also, to avoid overfitting phenomenon, 
regularization techniques and dropout operations must apply.

Furthermore, a hybrid model is presented to enhance 
the classification performance. Four classifiers as RF, SVM, 
XGBoost and LSTM have been integrated for this sake using 
an ensemble learning technique. The LSTM architecture has 
been taken from the LEMP tool proposed in (81) as LSTMWE. 
To conceptualize the mechanism, let the window size S be 
fixed. The input of the LSTM model is an amino acid sequence 
with window size S, while the concatenation of the extracted 
and selected feature vectors with window size S is the input 
of the other models. As can be seen in Figure 2, the first 
step involves using the k-fold CV method to extract the opti-
mal hyperparameters of each model (classifier) followed by 
training. Following the training phase, the aforementioned 
classifiers have been integrated using the ensemble learning 
technique. The outputs of models have been integrated using 
the average voting method, wherein the weights of the mod-
els all have been considered equal. On the other hand, let yj
represents the output for each model in Figure 2, evaluating 
the class (positive or negative) ownership probability for the 
tested site, then the final prediction of the hybrid model can 
be computed as follows: 

y = 1
4

4

∑
i=1

yi (32)

It is worth to mention that in the rare case of tie, the label 
vote corresponding to the classifier with the higher validation 
accuracy will be selected. According to the assessment of the 
integration of single models on the test dataset, the hybrid 
model outperformed the other models.

The models have been trained on the features extracted 
from our data set as described in the latter section. The 
selected features include EAAC, EGAAC, BLOSUM62 and 
PSSM, respectively. The selection criteria are based on the 
reported discriminating capability in the surveyed works in 
the literature as well as the achieved experimental results indi-
cating their discriminating capability. The training has been 
performed on a selection of fragment sizes, from 5 to 41. 
However, according to our computational trials, the window 
length of 35 is found to generate the best performance results 
among other lengths.

The choice of hyperparameters in the models
The corresponding model-specific parameters have been 
selected according to a grid search optimization algorithm. 
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Figure 2. The proposed classifier as a hybrid model.

Table 3. Parameters and functions of the utilized DNN model

Sequence of units in multilayers (512, 256, 128, 128, 64, 128, 256)

Activation functions ReLU, Softmax
Learning rate 0.001
Optimizing function Adam
Loss function Categorical cross entropy
Dropout (0.5, 0.4, 0.4, 0.4, 0.4, 0.5)
Number of epochs 50
Batch size 32

For an RF algorithm, the number of trees has been selected 
from the discrete range of 100 to 1000 wherein the trees 
number 1000 has been finalized. The parameter ‘mtry’ has 
been selected as √nr.of features. The parameters for training 
the XGBoost algorithm are optimized throughout the corre-
sponding built-in function wherein the number of estimators 
and maximum depth have been set as 1000 and 6, respectively. 
The choice of the cost value and kernel function of the SVM 
classifier is from discrete range between 10−4 and 104 (opti-
mal value: 10 with gamma as 0.001) and radial basis function, 
respectively. The most significant parameter for a KNN clas-
sifier is selected from the range of 1 to 100 wherein K = 5 has 
been found to get the maximum accuracy. The DNN model 
uses seven-structured layers with batch normalization whose 
building blocks are described in Table 3. 

Finally, the parameters of the proposed hybrid model which 
have been found by trial and error and also the structure 
of the whole model embedding the classifiers are shown in 
Figure 2. The performance of different trained ML models 
has been assessed through using the 5-fold CV test as well 
as an independent test set. A random sample of 10% of 
proteins (proteins with|lysine/k amino acids) is chosen as an 
independent test set, while the remainder 90% has been kept 
for 5-fold CV as a training/testing set (proteins with|lysine/k 
amino acids). Due to the small number of positive samples, 
90% of all data have been used for training and CV. Also, 
to evaluate the performance of different models (both single 

method-based and ensemble models), we have assessed them 
on the independent test data sets. The pipeline of the overall 
approach is depicted in Figure 3.

Computational results and discussion
We have trained the algorithms embedded in the afore-
mentioned classification models with the feature categories 
extracted with different window sizes. The finalized selected 
features include EAAC, EGAAC, BLOSUM62 and PSSM 
according to evaluating different features combination. The 
analysis of the results corresponding with different window 
sizes indicates the optimal window size as 35. The window 
size of 35 (−17 to +17; with the malonylated residue in the 
middle) produces the most accurate prediction among other 
window sizes, wherein the ACC value is at its maximum 
value among all classification models. In terms of accuracy, 
all of the generated ML models are lower-bounded by 0:64 
except for the KNN classifier. The sequence-based feature 
is the best-performing feature set, according to the results, 
and it improves the sensitivity and specificity of the mal-
onylation sites prediction. To conceptualize the prediction 
models, we have evaluated a hybrid of numerous features in 
addition to comparing predictive capacities among single fea-
tures. The EGAAC, which provides the best discriminating 
capability, has been picked as the pillar feature for the combi-
nation with other single features. Combining various features 
could result in a more elaborated prediction model of mal-
onylation sites in protein sequences. We have fed the models 
DNN, XGBoost, SVM, RF and KNN with the full feature 
(EAAC + EGAAC + BLOSUM62 + PSSM) sets. The best per-
formance of each classifier is picked and depicted in Figure 5. 
According to the observation, the classifier performances dif-
fer dramatically at the presence of full features comparing to 
a single feature set.

Also, the XGBoost model outperforms other single ML 
methods for full features corresponding to a window size of 
35 in a 5-fold CV setting which results in an accuracy of 
0.71 and AUC-ROC of 0.80. However, the proposed hybrid 
model shows slightly better performance than XGBoost and 
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Figure 3. The schematic shows the ML/DL methods for prediction of malonylation sites in protein sequence: 1–3—data collection and dataset creation, 
4—features extraction, 5—classifier models, 6—evaluation of the models.

Figure 4. Classification parameters corresponding to the prediction models fed by the full feature set (EAAC + EGAAC + BLOSUM62 + PSSM) of window 
size 35 for both cases: 5-fold CV and independent test. (a) Results corresponding to a 5-fold CV. (b) Results corresponding to an independent test.

achieves AUC-ROC value of 0.83 while providing the accu-
racy of 0.74. SVM and RF have been almost the same and 
have attained an accuracy and AUC-ROC of more than 0.64 
and 0.70 lightly better than the DNN. The classification accu-
racy corresponding to the proposed hybrid model is 0.74, and 
the AUC-ROC is 0.83 in an independent test set evaluation 
outperforming the rest. The results corresponding to the sin-
gle feature-based classification is presented in Figure 4 resulted 
from the best classifier (XGBoost) among all models excluding 

the hybrid scheme. According to the presented results, EAAC 
gives the best discriminating capability among all four selected 
features. It is worth mentioning that as the hybrid model is 
fed by both feature sets and the raw protein sequences, it 
has not been subjected to a single feature evaluation. The 
results corresponding to all features are depicted in Figure 5 
in both independent test set and CV models. According to the 
aforementioned tables, it could be concluded that the pro-
posed hybrid model and the XGBoost with corresponding 
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Figure 5. Classification parameters corresponding to the best-performing classification model (XGBoost) fed by the single feature of window size 35 for 
both cases: 5-fold cross-validation and independent test: (a) results corresponding to a 5-fold CV, (b) results corresponding to an independent test.

AUC-ROC 0.80 and 0.83, respectively, outperform the other 
ML models for the prediction of malonylation sites in protein 
sequences. The achieved results through the hybrid model are 
also comparable with the other tools presented in Table 2. The 
proposed hybrid model achieves almost the same accuracy 
as LEMP while slightly better AUC-ROC (AUC-ROC = 0.83) 
than LEMP (AUC-ROC = 0.81) ranked as the most accurate 
tool among other shortlisted ones. Therefore, we can con-
clude that a window size of 35 together with hybrid model 
is experimentally selected as the best setting for predicting the 
malonylation sites. The corresponding collective ROC curves 
and their AUC are depicted as well in Figure 6a and b for 
all classification models for both all features and individual 
ones referring to above discussion. It is worth mentioning that 
all of the approaches mentioned in this manuscript including 
the tools re-implemented have been coded using Python and 
R. The main employed libraries in Python were Scikit-Learn, 
TensorFlow and Keras. Also, the important packages used in 
R were E1071, Keras, Caret and XGBoost. The training phase 
have been performed in real time for almost all features. 

Conclusion and future work
In this study, we have conducted a comprehensive review 
and presented an analysis of ML and DL-based methods for 
predicting lysine/K malonylation sites in protein sequences. 
Our aim was to provide a thorough overview of the exist-
ing approaches and their effectiveness in this specific area of 
research. In our study, we conducted a comprehensive survey 
and analysis of existing research works, manuscripts, tools 
and databases related to the prediction of lysine/K malony-
lation sites in protein sequences. We developed a taxonomy 
to categorize and present the important features utilized in 

these works. The surveyed works were categorized, explained 
and summarized based on the classifiers they employed, their 
specifications and the features they utilized. Furthermore, 
to facilitate a fair comparison among the developed tools, 
we extracted a sample data set based on the most updated 
databases in the field. This allowed us to evaluate and com-
pare the performance of the different tools in a consistent 
manner. The tools have been trained and tested via the 
extracted dataset, and the classification performance has been 
presented.

Also, to enhance the prediction results and evaluate the dis-
criminative power of key features in the extracted data set, 
various ML and DL models have been trained and tested. 
These models include RF, KNN, XGBoost, SVM, DNN and 
a hybrid model. Based on the results, the proposed hybrid 
model, which combines RF, SVM, XGBoost and LSTM, 
demonstrates superior performance compared to the other 
models when all selected features are present. Additionally, 
the introduced hybrid model outperforms the nine shortlisted 
tools mentioned in the manuscript. Furthermore, among the 
selected and studied features, the EAAC feature exhibits a 
stronger discriminating capability.

As the future work and in the development side, further 
improvement on the software development will be chased 
down and a tool based on the ensemble DL methods as 
well as simple and sophisticated prediction models will be 
landed online. The benefits of such a computational tool 
are 2-fold. At first, the properties of each feature in terms 
of computational complexity and discriminating capability 
will be explored. Secondly, the prediction and classification 
of the malonylation sites on the extracted protein sequences 
will be performed. On the research side, the elaborate pre-
diction models will be investigated to promote the accuracy 
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Figure 6. ROC curves corresponding to the individual feature and collective features: (a) ROCs corresponding to the best utilized classifier (XGBoost) 
based on the single feature, (b) ROCs corresponding to the utilized classifiers at the presence of all features.

and to improve the desired classification parameters. In this 
approach, the models based on transfer learning and atten-
tion mechanisms as well as graph-based classification will be 
investigated. Finally, to elaborate feature engineering (specifi-
cally generating the new and more discriminating features) in 
the prediction models, utilizing proteomic data in malonyla-
tion sites or in general PTMs (e.g. (94)) which strengthen the 
analytic insight of the prediction models will be studied and
considered.
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