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Abstract
The aim of the study is to establish an online database for predicting protein structures altered in ocular diseases by Alphafold2 and 
RoseTTAFold algorithms. Totally, 726 genes of multiple ocular diseases were collected for protein structure prediction. Both Alphafold2 
and RoseTTAFold algorithms were built locally using the open-source codebases. A dataset with 48 protein structures from Protein Data 
Bank (PDB) was adopted for algorithm set-up validation. A website was built to match ocular genes with the corresponding predicted 
tertiary protein structures for each amino acid sequence. The predicted local distance difference test-C𝛂 (pLDDT) and template modeling 
(TM) scores of the validation protein structure and the selected ocular genes were evaluated. Molecular dynamics and molecular 
docking simulations were performed to demonstrate the applications of the predicted structures. For the validation dataset, 70.8% of 
the predicted protein structures showed pLDDT greater than 90. Compared to the PDB structures, 100% of the AlphaFold2-predicted 
structures and 97.9% of the RoseTTAFold-predicted structure showed TM score greater than 0.5. Totally, 1329 amino acid sequences 
of 430 ocular disease-related genes have been predicted, of which 75.9% showed pLDDT greater than 70 for the wildtype sequences 
and 76.1% for the variant sequences. Small molecule docking and molecular dynamics simulations revealed that the predicted protein 
structures with higher confidence scores showed similar molecular characteristics with the structures from PDB. We have developed 
an ocular protein structure database (EyeProdb) for ocular disease, which is released for the public and will facilitate the biological 
investigations and structure-based drug development for ocular diseases.

Database URL: http://eyeprodb.jsiec.org
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Introduction
Wildtype protein structures of various species can now be pre-
dicted by bioinformatics models, especially AlphaFold2 (1), 
which is freely accessed (https://alphafold.ebi.ac.uk/)(2). Pro-
tein prediction by AlphaFold2 programs is able to obtain com-
parable and even indistinguishable structures as compared 
to experimental proven structures (3). One recent advance-
ment is the capability to accurately predict structures of G 
protein-coupled receptors (4). Similarly, RoseTTAFold, also 
released in 2021, has also been applied to predict different 
protein structures (5, 6). These algorithms could facilitate 
protein structural and functional studies in physiological con-
ditions (7). Pathological situations, however, could be caused 

Key messages 

• The first study provides a protein structure database for 
ocular disease genes (EyeProdb).

• EyeProdb enables users searching on the web and submit-
ting requests for specific amino acid sequences of genes 
related to ocular diseases, which in return expands the 
database of EyeProdb.

• EyeProdb can facilitate the biological investigations and 
structure-based drug development for ocular diseases.

• EyeProdb reduces requirement of human expert 
assistance.
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by mutant proteins resulted from gene mutations, which 
could be different from the wildtype proteins. AlphaFold2 
and RoseTTAFold algorithms have been used to study genes 
and mutations in relation to the effects of structural changes 
to functions that affect biochemical pathways (8, 9). Protein 
structural databases/platforms for gene mutations should fur-
ther speed up the investigations on disease mechanisms and 
drug development (10, 11).

Hundreds of genetic ocular diseases have so far been dis-
covered with specific gene mutations, including congenital 
cataracts, retinitis pigmentosa (RP), congenital glaucoma, 
ocular coloboma, Leber’s congenital amaurosis, Stargardt dis-
ease, cone-rod dystrophies, choroideremia, inherited optic 
atrophy, corneal dystrophies and nystagmus. Congenital ocu-
lar diseases account for 60% of blindness among infants, and 
1.4 million children under the age of 16 years worldwide are 
visually impaired (12). The etiology of most of these diseases 
remains to be fully understood. Understanding the changes in 
protein structures of the gene mutations could facilitate the 
investigation of ocular disease mechanisms and further drug 
development.

With the release of open source code, especially the 
inference code and trained models of AlphaFold2 and 
RoseTTAFold algorithms, the determination of protein struc-
tures of different ocular disease gene mutations by artifi-
cial intelligence-based prediction might open a new way in 
addition to the experimental methods that require sophis-
ticated and expensive technologies, including X-ray crystal-
lography, nuclear magnetic resonance (NMR) imaging and 
cryo-electron microscopy (1, 13). To facilitate the biological 
investigations and structure-based drug development for ocu-
lar diseases, we aimed to establish a protein structure database 
for ocular diseases. In this study, based on the source code 
and trained models of AlpbhaFold2 and RoseTTAFold, we 
assembled the AlphaFold2 and RoseTTAFold protein struc-
ture prediction platform for the protein structure prediction 
of wildtype and variant amino acid sequences for different 
ocular diseases. The protein structure prediction performance 
of the validation dataset and ocular genes was evaluated. In 
addition, molecular dynamics and molecular docking simu-
lations were performed to determine the applications of the 
predicted protein structures.

Methods
Ocular disease gene collection and classification
More than 700 ocular genes with pathogenic mutations were 
collected from Uniprot (14) and the database of heredi-
tary ocular diseases developed by The University of Arizona 
(https://disorders.eyes.arizona.edu/), which are summarized 
in Supplementary Table S1.

Computational system setting and algorithms 
construction
Protein structure prediction
Source code and trained models of Alphafold2 (1) and 
RoseTTAFold (15) were downloaded and deployed in on-
premises data center. A protein structure prediction plat-
form, which combines the full functionality of Alphafold2 
and RoseTTAFold, was built and can be accessed through 
the internet. Given one or a batch of sequences, their

protein structures were predicted in parallel on multiple 
servers. The prediction results were recorded in the database. 
Besides protein structure prediction, the platform is a multi-
layered architecture using the model view controller (MVC) 
design pattern, which includes database, web application and 
web browser.

Hardware and software environment
Four servers were used to predict protein structures. The fol-
lowing is hardware and software environment of these servers: 
CPU with Intel i9-10980XE, 256GB DDR4 Memory, Nvidia 
RTX3090 GPU * 2, 2 Samsung SSD 870 EVO 4TB hard disks. 
Ubutnu 18.04, Cuda11.1.

Alphafold2
DeepMind released its open source version of Alphafold2 (1) 
on 15 July 2021. The recommended operating environment 
is based on Docker. The codebase of Alphafold2 was down-
loaded to our servers on 10 August 2021. We made some 
changes to both the parameters and source code. In order to 
support CUDA11.1, ARG CUDA was set to 11.1 in ‘Docker-
file’ and then the docker image was rebuilt. Considering the 
performance of computer hardware and to improve comput-
ing speed, the n_cpu parameters in the data/tools/hhblits.py 
and data/tools/jackhammer.py files were set doubled. The fol-
lowing two lines were added into the pipeline.py script to fix 
a bug (http://alphafold.hegelab.org/).

uniref90_msa = uniref90_msa[:self.uniref_max_hits] 
# hege

uniref90_deletion_matrix = uniref90_deletion_matrix[:
self.uniref_max_hits] # hege

Alphafold2 continues evolving, and the latest version is 
2.1.1. Some application programming interfaces (APIs) may 
have been changed by the time this article is published. The 
above method may be only suitable for the specific version as 
used in this study.

The prediction pipeline
In the Alphafold2 source code repository, the prediction pro-
gram file ‘run_docker.py’and a command line script were used 
to do prediction. To improve the efficiency of batch prediction, 
some minor modifications have been made to this program 
file. A custom program was developed to predict sequences in 
parallel using different GPUs and automatically using differ-
ent parameters for different sequences. The parameter ‘preset’ 
was set to ‘reduced_dbs’ for sequences longer than 2000 and 
‘full_dbs’ for others, and the parameter ‘max_template_date’ 
was set to ‘2021–08-14’. The ‘max_template_date’ was prior 
to the dates of determining protein structures of sequences 
that was used for validation using experimental methods. 
Five structures were obtained for each input sequence. After 
performing an amber (16) relaxation procedure on the unre-
laxed structure prediction, these five models were ordered 
and ranked_0.pdb for the prediction. The one of the highest 
confidence was selected as the final model.

RoseTTAFold
According to the Baker Lab, the source code and trained mod-
els of RoseTTAFold (15) were publicly available almost as 
same as Alphafold2. The recommended running environment 
was Conda. The codebase of RoseTTAFold was downloaded 
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to our servers on 12 August 2021. The Pyrosetta version was 
used instead of the end-to-end version, and model_1.pdb was 
chosen as the selected model. RoseTTAFold is equipped with 
a prediction shell script ‘run_pyrosetta_ver.sh’. The param-
eters ‘CPU’ and ‘MEM’ in this file were set tripled. The 
statically compiled version HH-suite (17) in the Conda envi-
ronment ‘RoseTTAFold’ was replaced with that of build-
ing from source in order to fix a bug that displayed 
the message ‘segmentation fault(core dump)’ for a few 
sequences. For 23 sequences, which raised error ‘error 
in hhalignment.cpp:X: MergeMasterSlave:’ during hhblits, 
the sequence databases parameters were modified from 
DB = ‘$PIPEDIR/UniRef30_2020_06/UniRef30_2020_06’ 
and MYDB = ‘$PIPEDIR/bfd/bfd_metaclust_clu_complete_
id30_c90_final_seq.sorted_opt’ to only the UniRef30
database. Except for this modification, other parameters are 
set by default. A custom python program that called this script 
was developed to predict sequences in parallel using different 
GPUs. Given one or a batch of sequences, their protein struc-
tures were predicted in parallel on multiple servers. As for 
every sequence, five pdb files with pLDDT (18) scores were 
generated by Alphafold2 and five pdb files with estimated 
CA rms error (19) values were generated by RoseTTAFold, 
respectively. After prediction, all the data, including the 
sequence, prediction type, parameters used in prediction, pre-
dicted pdb files and corresponding pLDDT or estimated CA 
rms error values, were recorded into the database.

Database
MySQL 5.7.37 was used as the database management system. 
There are three main tables: disease, sequence and protein 
structure prediction. The relationship between diseases and 
sequences is many to many, and the relationship between 
sequences and predictions is one to many. The relationship 
between genes and Online Mendelian Inheritance in Man 
(OMIM) IDs is one to one. Sequences were stored as both the 
TEXT field of the database and external fasta files. Likewise, 
protein structure data were stored as both the TEXT field of 
the database and external fasta files.

Web application
Python 3.6.10, Flask2.0.2 and mysql-connector-python 
8.0.27 were used to develop the server-side web application. 
Flask was used to construct both the MVC application and 
Web APIs. Client-side web pages were built using HTML5, 
CSS and Javascript. The request library was used to call Web 
APIs. Importantly, the ngl (20) library was used to visualize 
protein structures in the web browser. The web site included 
two entry points, one for administrators and the other for 
public users. Administrators can add (or delete, update) dis-
eases and sequences, and predict protein structures of one 
or multiple sequences. Public users can view the diseases, 
sequences and predicted protein structures. They can also 
upload their own sequences and receive their predicted protein 
structures after a period of time.

Validation of prediction algorithms
These locally built AlphaFold2 and RoseTTAFold algorithms 
were validated with a dataset containing 48 experimental 
protein structures, which were newly released (after 1 Septem-
ber 2021) in PDB. These proteins with sequence length of 

124–1332 have not been used for development of the algo-
rithms. With the structure prediction, per-residue confidence 
score (pLDDT, 0–100), estimated CA rms error, TM-score 
(0–1), IDDT (0–1) and GDT_TS-score (0–1) of each predic-
tion were also obtained for further analysis and comparison.

Ligand docking and molecular dynamics simulation
Computational materials
Proteins were selected on the basis of their pLDDT scores 
of the AI platform. The PDB structure of the protein was 
retrieved from the protein data bank (https://www.rcsb.org) 
by the high-resolution X-ray. The Alphafold structure was 
from the AI platform. The ligand library used for high 
throughput virtual screening was from FDA-approved drugs 
(∼1500 compounds) in ZINC database (https://zinc.docking.
org).

Protein preparation and ligand preparation
The structures of selected proteins from PDB database and 
our prediction by Alphafold2 were first optimized by module 
of protein preparation wizard in Schrödinger2021-1 package. 
The process of protein preparation utilized options such as 
assigning of bond orders, the addition of hydrogen atoms, 
the treatment of formal charges and the abstraction of water 
molecules. The optimized protein structure was used for the 
subsequent docking calculations (21). Ligands were prepared 
using the LigPrep module in Schrödinger. The protonation 
state and tautomeric states were determined at 7.0 ± 2.0 pH. 
Energy minimization was carried out with OPLS force field. 
The optimized ligands structures were then used for molecular 
docking.

Binding site prediction
Binding site identification is useful for drug discovery (22). 
Incorrect binding site would directly cause failure of molec-
ular docking. Herein, binding sites were predicted by the 
Receptor Grid Generation panel in Schrödinger. For struc-
tures solved with ligands, this tool would directly use the 
ligand position as the binding site. For structures without lig-
ands, the program would predict several binding sites. Once 
the binding site was determined, the grid box could be gen-
erated automatically. For the grid box generation, default 
parameters were used (21).

High throughput virtual screening (HTVs) and Ligand 
docking
Ligand docking was performed using the Grid-based Ligand 
Docking with Energetics (GLIDE) module. High throughput 
virtual screening of the selected compound (∼1500 com-
pounds from FDA-approved drugs) was performed against the 
target protein with a flexible docking parameter for ligands.

The prepared glide grids were selected for molecular dock-
ing studies and each ligand was docked to PDB-protein indi-
vidually and generated a best binding pose ligand–protein 
complex with the minimum dock score (D score) and glide 
energy (G energy). Then, the same ligand was docking 
to Alphafold-predicted protein by standard precision (SP). 
Default parameters were used, and no constraints were 
applied during the docking process.
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Molecular dynamics (MD) simulations
MD simulation was carried out by the Desmond module of 
the Schrödinger suite. The ligand–protein complex obtained 
from molecular docking was used as the starting structure. 
Briefly, a model system was built using the system builder
module in maestro, including determination of protonation 
states of residues after adding water box and counter ions 
(Na+ and Cl−). TIP3P model was used for water molecules 
and the shape water box was set as orthorhombic. For all 
simulations, OPLS_2005 force field was used (23). Finally, 
100-ns simulation was carried out. The saved trajectories 
were analyzed using Simulation Interaction Diagram, includ-
ing the root mean square deviation (RMSD) (24) and root 
mean square fluctuation (RMSF).

Cross correlation and normal mode calculation
The dynamic correlations between residues were calculated 
by Bio3d program. The NetCDF-formatted trajectory gen-
erated by Amber after production simulation was sampled 
and converted into a dcd format file, which was input into 
Bio3D along with the pdb-formatted simulation initial struc-
ture. All parameters used to analyze residue cross-correlation 
were default. The two-dimensional residue cross-correlation 
matrix was drawn by the igraph module of Bio3D. Normal 
modes calculation was performed with ProDy package. The 
motions of proteins were visualized by VMD program.

Results
Validation of the set-up of the protein structure 
prediction algorithm
Ten protein structures predicted by our platform were ran-
domly selected and compared to the corresponding protein 
structures released in the AlphaFold website. The TM-score 
and lDDT of the comparison between the structures predicted 
by our platform and the corresponding structures released in 
the AlphaFold website ranged from 0.913 to 1.000 and from 
0.930 to 0.990 (Supplementary Table S2), respectively, indi-
cating that the structures predicted by our platform showed 
high similarity to that released in the AlphaFold website. To 
validate the set-up of the open-source code of the AlphaFold2 
and RoseTTAFold algorithm, the amino acid sequences of 
48 protein structures released from the RCSB protein data 
bank (PDB; https://www.rcsb.org/, after 1 September 2021) 
were taken for the prediction validation analysis (Supplemen-
tary Table S3). The corresponding TM-score and pLDDT of 
each prediction generated by AlphaFold2 and RoseTTAFold 
were plotted with the number of residues (124–1332 residues) 
in Figure 1a and b. Among the 48 selected structures, 
97.9% (47/48) of the AlphaFold2 predictions showed pLDDT 
greater than 70 and 70.8% (34/48) greater than 90. For 
RoseTTAFold predictions, 89.6% (43/48) have estimated CA 
rms error greater than 0.7 and 66.7% (32/48) greater than 
0.9. Compared to the PDB-released structures, 100% (48/48) 
of the AlphaFold2 predictions showed TM-score greater than 
0.5, and 97.9% (47/48) of the RoseTTAFold predictions 
showed TM-score greater than 0.5. The structural align-
ments of 7JZ7 prediction (with both high pLDDT and TM-
score) are shown in Figure 1c and d, and the alignments 
of 7AJ6 prediction (with high pLDDT but lowest TM-score) 
are shown in Figure 1e and f. Critically, 11 mutant protein 
structures were evaluated for the potential of mutant protein 

structure prediction by our AlphaFold2 and RoseTTAFold 
algorithms. Most of the predicted mutant protein structures 
showed good alignments with the corresponding PDB struc-
tures (TM-score >0.5) with notably similar geometry of the 
side chains (Figure 1i and j, Supplementary Figure S1). Collec-
tively, our results indicated that our set-up of the AlphaFold2 
and RoseTTAFold algorithms could be able to generate pro-
tein structures with the input of amino acid sequences, and 
should be useful for protein structure prediction.

Interface of EyeProdb
This newly established Ocular Protein Structure Database, 
Eyeprodb (http://eyeprodb.jsiec.org), can reliably provide a 
database for the predicted protein structures of the ocular dis-
ease genes. The predicted structures are listed in alphabetical 
orders according to the genes or the phenotypes (Figure 2). 
Users could search by the gene/protein name or phenotype. 
Each gene is linked to OMIM for genetic information in 
detail, UniProt for annotation of protein domains, structure 
and functional sites of the protein and AmiGO for GO terms 
and their annotations. Each protein has a prediction-list page 
that showed the sequence length, pLDDT score and esti-
mated CA rms error for each of the listed wildtype and its 
mutants (Supplementary Figure S2a). Five predictions of the 
AlphaFold model and the RoseTTAFold model were listed by 
the pLDDT score and estimated CA rms error, respectively. 
Tertiary protein structures of each prediction could be visual-
ized in a full-screen view with a built-in 3D Pdb viewer, with 
pLDDT or estimated CA rms error (Figure 2b, Supplementary 
Figure S2a). Customized service for protein structure predic-
tion of specific genes could be obtained on a request page 
(Supplementary Figure S2b). By providing protein sequence 
with gene information and contact information, users could 
submit a service request to our platform and obtain a respond 
within a few days.

Ocular disease genes and variant protein structure 
prediction analysis
In this study, 726 genes with phenotypes and OMIM numbers 
have been collected. Among them 1329 amino acid sequences 
(with the length of 11–2479 residues) of both wildtype and 
variants of 430 genes have been predicted by our set-up 
of Alphafold2 and RoseTTAFold algorithms These predicted 
genes were summarized according to the ocular tissues, the 
type of diseases, including strabismus, lens, vitreous, ocular 
deformity, eyelid, neuro-ophthalmology, choroid, iris, retina, 
cornea, myopia and glaucoma in Table 1. Top five predicted 
structures would be generated by each algorithm (Supplemen-
tary Table S4). The confident score pLDDT by AlphaFold2 
and estimated CA rms error by RoseTTAFold for each pre-
diction were plotted with the number of residues (Figure 3a 
and e). We found that 75.9% (315/415) of predictions showed 
pLDDT larger than 70 for the wildtype sequences and 76.1% 
(596/783) for the variant sequences. The plot also indicated 
that the prediction confidence for shorter sequences was 
higher than that for the longer ones. In contrast, no obvious 
trend was noticed in the plot of estimated CA rms error with 
the number of residues. Different types of mutations showed 
similar distributions of pLDDT and estimated CA rms error 
along the number of residues (Figure 3b–d and f–h).
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Figure 1. Model confidence profiling for validation genes. (a–d) The corresponding pLDDT (estimated CA rms error) and TM-score of each prediction 
generated by AlphaFold2 and RoseTTAFold were plotted. (e–h) Structural alignments of prediction of 7JZ7 and 7AJ6. (i–j) Similar geometry of the side 
chains of 6SSO.

Highly confident predictions and molecular 
simulations
After the molecular docking of the selected ligand
(Figure 4a–h), 100-ns MD simulations of the complexes were 
performed to compare the stability and dynamic behavior 
of PDB and predicted protein structure. The stability and 
structural flexibility of these complexes were studied through 
RMSD and RMSF, respectively.

The PDB (7wwz) protein’s RMSD for BRD4 co-crystallized 
complex remained stable, touched 2.65 Å at 100 ns and the 
predicted protein (pLDDT: 96.76) reached 2.19 Å at 100 

ns (Figure 4i). For the DHR1 co-crystallized complex, the 
RMSD of PDB(7mqj) protein reached 2.53 Å at 100 ns while 
the predicted protein (pLDDT: 82.06) RMSD reached 4.31 Å 
(Figure 4k). The predicted protein with higher pLDDT is more 
stable.

For the BRD4 co-crystallized complex, the RMSF values of 
the residues around the active site did not exceed 3.2 Å in both 
PDB and predicted proteins (Figure 4j). This indicates that 
the flexibility of residues in the active site was not influenced 
upon binding of the compounds. Regardless of the nature of 
these residues within the active site of complex, they were 
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Figure 2. Searching EyeProdb. (a) EyeProdb provides a search engine to find ocular proteins of interest based on gene/protein name or phenotype. (b) 
Meta-information and 3D visualization of the EyeProdb structure predictions.

Table 1. Summary of inheretary ocular genes and sequence for structure prediction

No.
Disease type Gene Sequence Wild type Mutant Sequence length median (range)

Myopia 53 182 52 130 553 (99–2479)
Eyelid 16 44 16 28 458 (215–1661)
Cornea 63 209 62 147 542 (114–2479)
Glaucoma 34 139 33 106 543 (152–1786)
Iris 26 111 26 85 472 (100–1786)
Choroid 10 31 10 21 585 (220–1834)
Lens 107 346 107 239 422 (21–2479)
Vitreous 8 24 8 16 201 (109–1493)
Retina 276 823 274 549 555 (11–2479)
Neuro-ophthalmology 111 355 110 245 467 (37–2479)
Strabismus 24 72 24 48 513 (125–1935)
Ocular deformity 44 132 44 88 389 (109–2479)
Alla 430 1329 426 903 498 (11–2479)

aNumbers of gene sequence wild type and mutant are less than the sum of different disease types, because some genes with multiple signs are repeatedly 
counted.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad083/7477822 by guest on 19 M

ay 2024



Database, Vol. 00, Article ID baad083 7

Figure 3. Model confidence profiling for ocular genes. (a and e) The pLDDT by AlphaFold2 and estimated CA rms error by RoseTTAFold for each 
prediction were plotted with the number of residues. (b–d and f–h) The pLDDT and estimated CA rms error were plotted according to different types of 
mutations.

structurally stable (17). For the DHR1 co-crystallized com-
plex, the RMSF values of the residues did not exceed 3.0 Å in 
both PDB and predicted protein (Figure 4l).

Finally, the interactions between proteins and ligands were 
investigated, including hydrogen bond, hydrophobic inter-
action, water bridges and ionic interaction. For the BRD4 
co-crystallized complex, the binding residues for the ligand 
were ASN140 in PDB and ASN93 in Alphafold2-predicted 
structure. In both the PDB and Alphafold complexes simu-
lation trajectory, it formed hydrogen bonds with GLN85 and 
CYS136, with good overlap (Figure 4m–n). Similar interac-
tion residues and hydrogen bonds were observed in the DHR1 
PDB and Alphafold2-predicted structure (Figure 4o–p).

Discussion
At present, around 200 million known proteins are doc-
umented in UniProt (14). Each protein has a unique 3D 
structure. In contrast, there are only 180 000 structures, 
resolved by X-ray crystallography, NMR imaging and cryo-
electron microscopy, documented in PDB (25). With the 
development of neural network-based prediction algorithms, 
including AlphaFold2 and RoseTTAFold, the predicted pro-
tein structures could be dramatically increased (1, 13). The 
AlphaFold Protein Structure Database (AlphaFold DB), cre-
ated by DeepMind in collaboration with emBL-EBI, contains 
a set of 360 000 predicted structures of wildtype proteins cov-
ering most of the human and 20 other organisms derived from 
UniProt. Important advancements in RoseTTAFold algorithm 
development have been made in predictions of proteins with 
specific function. One notable example is a powerful three-
dimensional model building for antibodies (26). Currently 

(2), there is still a lag in the experimentally determined 
mutant protein structures for many different diseases, which 
makes the investigation of biochemical mechanism of dis-
eases stochastic and ineffective. On a global perspective in 
the human proteome, metrics built on the AlphaFold model 
can be used for predictions of multi-domain proteins and 
their alternations that are related to signaling pathway dis-
orders (27). RoseTTAFold and AlphaFold, in deep learning 
modes, have been explored that are capable to predict pro-
tein structures affected from mutations, showing a potential 
to investigate associations and putative effects of gene muta-
tions to development of diseases (28). We, for the first time, 
develop a protein structure prediction database for ocular 
disease genes (EyeProdb). Tertiary protein structure of gene 
variants for specific ocular diseases could be visualized directly 
in our platform, EyeProdb. It enables users searching on the 
web and submitting requests for specific amino acid sequences 
of genes related to ocular diseases. To aid advancing scien-
tific discovery in ophthalmic structural and functional biology, 
EyeProdb is freely accessible to the scientific community for 
reliable, cost-effective and readily accessible protein predic-
tion. DeepMind and the emBL-EBI have released the predicted 
structures for many known proteins (2), especially for a spe-
cific discipline. EyeProdb is more general in applications and 
can be interactive. Users with specialized or private sequence 
sources will expand the database of EyeProdb.

To validate the efficiency of our set-up of AlphaFold2 and 
RoseTTAFold algorithms for protein structure prediction, 46 
proteins with different length of amino acids released in PDB 
after 1 September 2021 were applied for structural predic-
tion evaluation. Compared to the released structures in PDB, 
we showed that both algorithms are efficient for structure
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Figure 4. Molecular simulations of Highlighted predictions compared with PDB structures. (a–b) 7wwz-PDB-Protein docking with 7ow; (c–d) 
7wwz-Alphafold-Protein docking with 7ow; (e–f) 7mqj-PDB-Protein docking with ADP; (g–h) 7mqj-Alphafold-Protein docking with ADP; (i–k) RMSD of 
7wwz and 7mqj; (j–l) RMSF of 7wwz and 7mqj; (m–p) Complex interaction: (m) 7wwz-PDB-Complex, (n) 7wwz-Alphafold-Complex, (o) 
7mqj-PDB-Complex, (p) 7mqj-Alphafold-Complex.

prediction of protein based on the pLDDT and TM scores. On 
the contrary, the prediction might not be precise between mass 
without substantial mutual interaction. Molecular simulation 
investigations also indicted that predicted protein structures 
with higher pLDDT scores could be more reliable and were 
comparable to PDB structures.

Some open cloud-based platforms and Colab notebooks 
(29) can be conveniently used to predict the structure of 
a protein. These platforms adopted a simplified version of 
Alphafold2, by which multiple sequence alignments (MSA) 
and templates were not used. In order to maximize the predic-
tion accuracy, we utilized the source code and trained models 
of Alphafold2 (1) and RoseTTAFold (15) in our on-premises 
data center to build of EyeProdb. This protein structure 
prediction platform, which combines the full functionality 
provided by Alphafold2 and RoseTTAFold, can be accessed 
through the internet.

There can be limitations in the AI-based prediction of 
protein structure for AlphaFold2 and RoseTTAFold. For 
instance, confidence scores can provide assessment meth-
ods for the predictions, which have also been shown in 
our highlighted cases. However, AlphaFold predictions with 
high confidence can be different from the experimentally 
resolved structures. Besides, for proteins with multiple con-
formations, AI algorithms cannot readily cope with proteins 

that can adopt different structures in different conforma-
tions (30). Similarly, though Humphreys et al. have reported 
a multistep bioinformatics and deep learning pipeline for 
identifying pairs of proteins likely to interact and modeling 
the three-dimensional structures of the corresponding pro-
tein complexes (31), Alphafold2 currently can only predict 
the structures of monomeric proteins or one of the chains 
of oligomeric proteins. The structures of complex oligomeric 
proteins cannot currently be predicted and assembled by 
AlphaFold at a single time. Protein dynamics could not be 
captured for ligands, such as DNA, RNA, other molecules 
and minerals. On the other hand, the AI algorithms can 
serve as ‘hypothesis generator’ to provide new information 
for experimental design and validation for biological inves-
tigations on gene or proteins for specific diseases without 
the experimentally resolved structures. For the proteins that 
experimental structures cannot be resolved, AI prediction is 
essential promising approach for further functional investi-
gations. With the expansion of AlphaFold DB and variant 
databases, structure interpretation will be the basic and indis-
pensable step for further mechanism studies.

One of the limitations of our study is that we only pre-
dict the structures of monomeric proteins, while other studies 
have also included polymers and protein–protein interac-
tions. For example, a recent paper by Wang et al. (2023) 
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used coevolution analysis and deep-learning–based structure 
modeling to identify and build models of core eukaryotic pro-
tein complexes in yeast. These interactions are important for 
understanding the biological functions and mechanisms of 
many eukaryotic proteins, especially in complex cellular pro-
cesses. However, we believe that predicting the structures of 
monomers is still important, as they are the building blocks of 
larger assemblies and can provide insights into their folding 
and stability.

However, predicting the structures of protein complexes is 
more challenging than predicting the structures of monomers, 
as it requires accurate modeling of both the individual sub-
units and their interfaces. Moreover, the available data on 
protein–protein interactions is incomplete and noisy, and 
there may be many undiscovered interactions in the yeast pro-
teome. Therefore, our ophthalmic protein database may not 
capture the full structural diversity and functional potential 
of the proteins in our target domain. To address this lim-
itation, we plan to improve our database in the future by 
incorporating protein–protein interaction data from various 
sources, such as coevolution analysis, experimental assays 
and literature mining. We will also use state-of-the-art deep 
learning methods, such as RoseTTAFold and AlphaFold, to 
predict the structures of protein complexes from their amino 
acid sequences. By doing so, we hope to provide a more 
comprehensive and accurate resource for ophthalmic protein 
structure prediction and analysis.

The first release of EyeProdb contains over 1329 pre-
dicted structures for different types of ocular diseases. These 
will facilitate the biological investigations and structure-based 
drug development for ocular diseases. We are to expand Eye-
Prodb for continuous provision and update of more predicted 
protein structures and their alterations due to gene muta-
tions in ocular diseases. This will persistently enable effective 
drug design and development based on specific disease mecha-
nisms affected by alternations in protein structures. EyeProdb 
is accessible to the whole scientific community, which is in 
line with open accessibility of research tools especially for 
protein structure and their alterations as exemplified by the 
development of ColabFold (32).
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