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Abstract
It is getting increasingly challenging to efficiently exploit drug-related information described in the growing amount of scientific litera-
ture. Indeed, for drug–gene/protein interactions, the challenge is even bigger, considering the scattered information sources and types 
of interactions. However, their systematic, large-scale exploitation is key for developing tools, impacting knowledge fields as diverse 
as drug design or metabolic pathway research. Previous efforts in the extraction of drug–gene/protein interactions from the literature 
did not address these scalability and granularity issues. To tackle them, we have organized the DrugProt track at BioCreative VII. In the 
context of the track, we have released the DrugProt Gold Standard corpus, a collection of 5000 PubMed abstracts, manually annotated 
with granular drug–gene/protein interactions. We have proposed a novel large-scale track to evaluate the capacity of natural language 
processing systems to scale to the range of millions of documents, and generate with their predictions a silver standard knowledge 
graph of 53 993 602 nodes and 19 367 406 edges. Its use exceeds the shared task and points toward pharmacological and biological 
applications such as drug discovery or continuous database curation. Finally, we have created a persistent evaluation scenario on 
CodaLab to continuously evaluate new relation extraction systems that may arise. Thirty teams from four continents, which involved 
110 people, sent 107 submission runs for the Main DrugProt track, and nine teams submitted 21 runs for the Large Scale DrugProt 
track. Most participants implemented deep learning approaches based on pretrained transformer-like language models (LMs) such 
as BERT or BioBERT, reaching precision and recall values as high as 0.9167 and 0.9542 for some relation types. Finally, some initial 
explorations of the applicability of the knowledge graph have shown its potential to explore the chemical–protein relations described 
in the literature, or chemical compound–enzyme interactions.
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Introduction
The volume of drug-related information stored in scientific 
literature is growing continuously and it is challenging to 
exploit it efficiently. In particular, there is a range of different 
types of drug–gene/protein interactions, and their systematic 
extraction and characterization are essential to analyze, pre-
dict and explore key biomedical properties underlying high-
impact biomedical applications. Indeed, protein–chemical 
interactions are key in cellular processes, and their study 
is central for applications such as drug discovery, adverse 
drug reactions, drug repurposing and drug design studies. 
Nevertheless, the existing information on protein–chemical 
interactions is dispersed across a large diversity of databases 
and literature repositories such as DrugProt (1), STITCH (2) 

and ChEMBL (3). Maintaining and updating this informa-
tion within these databases poses a complex challenge for 
their administrators. Therefore, there is a pressing need to 
centralize and structure the fragmented literature data into 
annotated databases that specifically serve the domains of 
biology, pharmacology and clinical research, with the inclu-
sion of natural language processing (NLP) methods to unlock 
the information embedded within the documents.

Relation extraction (RE) is an NLP task that concerns iden-
tifying and classifying relations/interactions between named 
entities extracted from texts. It comes after named entity 
recognition (NER) in information extraction pipelines. For 
instance, for the task of detecting protein–chemical interac-
tions, a system must (i) recognize the protein and chemical 
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mentions (NER) and (ii) identify and classify the described 
protein–chemical relation (RE).

ChemProt (4) has been the most popular open effort for 
extracting chemical–protein interactions from biomedical lit-
erature. Nevertheless, employing the outputs of ChemProt for 
practical applications reveals some limitations.

First, ChemProt combined several interaction relations into 
10 categories (only five used for benchmarking). This issue 
posed a challenge from a granularity perspective, as those 
groups hindered the practical utility of the resource in biolog-
ical applications. Furthermore, the grouping of the relations 
not only introduced complexity into the classification proce-
dure but also created problems generating a consistent knowl-
edge graph. Moreover, the challenge of generating a massive 
knowledge graph was also problematic because of the absence 
of scalability assessment within the ChemProt shared task.

The ChemProt results considerably impacted the develop-
ment and evaluation of new biomedical RE systems. However, 
it reflected one of the barriers to the NLP development in 
clinical applications, as identified by Chapman et al. 2011: 
‘Lack of user-centered development and scalability’ (5). Cur-
rently, biomedical information is scattered over the literature. 
Plus, systems must be evaluated in scenarios aligned with 
real-world applications and must scale up efficiently to large 
amounts of data from different sources and dates.

To address these three issues, we have organized the novel 
DrugProt shared task, which focuses on user-centered devel-
opment and scalability. First, relation types are more gran-
ular and aligned with real-world applications. Second, we 
have selected high-impact relations associated with biological 
interaction networks for applications such as drug discovery. 
Third, a single entity pair may be associated with multiple 
relation types, as in biomedical literature. Lastly, we intro-
duce the Large Scale DrugProt track that serves to evaluate the 
scalability of systems in terms of their predictive performance.

The output of the DrugProt shared task includes the largest, 
manually annotated corpus for chemical–protein interaction 
extraction with text-bound annotation mentions. With the 
mention annotations, we have trained the DrugProt NER tag-
gers: two state-of-the-art NER systems (6), one for chemical 
and the other for gene/protein mentions. The model engine 
is public at GitHub (https://github.com/jouniluoma/drugprot-
ner-tagger).

The NER systems were run on the entire PubMed. For the 
Large Scale DrugProt track, we have released a subset of it (2.3 
million abstracts), the silver standard corpus of gene/protein 
mentions with 33 578 479 named entities and the silver stan-
dard corpus of drug mentions with 20 415 123 named entities. 
In addition, the participants’ predictions of the Large Scale 
DrugProt track have allowed the creation of a silver standard 
knowledge graph of gene/protein–drug relations over those 
2.3M PubMed abstracts. Additionally, we have run a compet-
itive RE system (Turku-BSC system) over the entire PubMed 
dataset, resulting in the creation of a massive knowledge 
graph of relations extracted from the whole PubMed (https://
doi.org/10.5281/zenodo.7252237). This knowledge graph is 
highly relevant for a wide spectrum of applications that 
involve mining chemical–gene information, such as drug dis-
covery, drug design, adverse drug reactions, drug repurposing 
studies or database curation.

Knowledge graphs are relevant, and recently there has been 
a significant increase in their generation within the context 

of the COVID pandemic. Examples include the work of 
Domingo-Fernández et al. (7), Wang et al. (8) or Shengtian 
et al. (9). However, it is noteworthy that the methods utilized 
for their creation were not at the cutting edge, mainly relying 
on lexical approaches or dictionary-based methods.

The generation of knowledge graphs within the DrugProt 
initiative involved the use of a state-of-the-art NER system (6) 
and a combination of leading-edge biomedical RE systems. 
Additionally, the DrugProt setting allows the granular bench-
marking of such systems. Moreover, the NER system, akin to 
numerous RE systems, is accessible to the public.

Methodological evolution in RE
Throughout the course of the DrugProt initiative, notable 
advancements have been observed in the performance of 
biomedical RE systems. To contextualize this progress, the fol-
lowing paragraphs offer a brief overview of the evolution of 
RE methods.

Given that RE follows NER in information extraction 
pipelines, entity mentions always serve as input data to cre-
ate RE systems. This granularity in annotations enables task 
organizers to evaluate and compare the performance of the RE 
task independently, rather than evaluating the combined per-
formance of the entity and RE tasks. Therefore, the typical RE 
scenario starts with a set of documents with annotated named 
entities (referred to as ‘mentions’), with the primary objective 
of identifying and classifying relations between those named 
entities. Developers can either utilize supervised machine 
learning (ML) techniques or, conversely, employ unsupervised 
methods.

Systems built using unsupervised techniques are con-
structed exclusively using the texts and named entities. These 
systems can leverage several techniques including pattern clus-
tering (10), dependency parsing (11) or heuristics (12). How-
ever, these techniques usually require large-scale corpora as 
support, exhibit limitations in distinguishing between various 
relation types and often have a low recall when generating 
low-frequency relation pairs (13).

On the other hand, supervised systems need prelabeled 
example data to learn from. These training data facilitate the 
inference of model parameters and their use over previously 
unseen datasets. In this methodology, training data are of vital 
importance to achieve high-quality models. Consequently, the 
process of generating data with rigorous quality standards, 
following specific guidelines, becomes an essential step for 
both assessing and refining RE models. These corpora, which 
have been manually labeled by experts, are commonly known 
as Gold Standard (GS). However, due to manual annotation 
being laborious and expensive, an alternative is to generate 
automatic annotations with several automated systems and 
combine them. This corpus is typically called silver standard, 
a concept introduced by the CALBC initiative (14). The upper 
part of Figure 1 shows the most significant RE corpora over 
time. 

Within the biomedical domain, there are several GS cor-
pora with relation annotations. Attending to the entities 
involved in the relations, numerous open corpora focus on dis-
tinct categories. For instance, there are resources on protein–
protein interactions, including the PPI (15) corpus used in 
BioCreative II and the BioInfer (16) corpus. Specialized cor-
pora on drug–drug interactions, exemplified by the DDI 
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Figure 1. An overview of relevant RE corpora and technologies.

corpus (17) released as part of SemEval2013; chemical dis-
eased interactions, like the CDR corpus (18), a component 
part of the BioCreative V venue; or enzyme–metabolite inter-
actions, such as ME corpus (19)), among many others.

ChemProt (4) is the most popular open GS for chemical–
protein interactions. It contains PubMed abstracts exhaus-
tively and manually annotated with mentions of chemical 
compounds/drugs and genes/proteins, as well as 22 differ-
ent types of compound–protein relations. The corpus was 
published with the relations grouped into 10 classes, out of 
which 5 were utilized during the task evaluation process. 
It was employed in BioCreative VI and since then has been 
used as a standard benchmark for evaluating biomedical RE 
systems (20, 21).

In addition to ChemProt, other corpora include chemical–
protein interactions among different relation types. For 
instance, the GENIA-REL corpus (22) focuses on relations 
involving proteins, and the ChEBI corpus (23) includes one 
relation-type tailoring when ‘chemical or metabolite interacts 
with and affects the behavior of a biological target’.

There are also chemical–protein interaction corpora cre-
ated solely to evaluate a specific RE system. For instance, 
Humphreys et al. (24) created a corpus of seven articles from 
the journals Biochimica et Biophysica Acta and FEMS Micro-
biology Letters, and Czarnecki et al. (25) created a small 
training corpus of metabolic reaction information.

As previously discussed, GS corpora play an important role 
in advancing the state-of-the-art in RE, complementing tech-
nological progress. The release of these corpora has facilitated 
the creation of numerous supervised RE systems, as shown in 
the lower part of Figure 1. According to Bach et al. (26), up 
to 2013, ‘supervised approaches for RE were further divided 
into feature-based methods and kernel methods’.

In feature-based methods, syntactic and semantic features 
are extracted from the texts. Then, these features are input 

into an RE system to train it or to extract novel relations. 
Transforming the original text into the right features requires 
a lot of work and is one of the major bottlenecks of this 
approach. Kernel-based methods do not need the explicit 
definition of a priori features. Kernel functions use the origi-
nal instance representation and compute similarities between 
a pair of instances (27). Therefore, the feature engineering 
workload is reduced, and the feature space can become much 
larger than the feature-based methods.

Kernel and feature-based methods were compared for 
biomedical RE in the SemEval DDI-2013 (28) shared task. At 
the time of the task, both feature and kernel-based approaches 
were used by competitive teams. Indeed, the highest perfor-
mance was obtained by Chowdhury et al. (29) who designed 
a two-stage system. First, a feature-based classifier discards 
sentences with no relation. Second, a kernel-based system 
classifies the remaining sentences into one of the four rela-
tion types defined in the task. Regarding the ML algorithm 
choice, all participants employed support vector machines, 
and non-linear kernels were more successful than linear ones.

From 2013 on, artificial neural networks, which work 
based on dense vector representations, produced superior 
results on various NLP tasks, including RE. This was mainly 
due to the success of word embeddings (dense vector represen-
tation of words) and deep learning methods (30). Two major 
deep learning architectures have been initially employed in 
NLP tasks: recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). The input text is first tok-
enized and then encoded into a dense vector representation, 
using word embeddings, RNN and/or CNN layers. Then, the 
results can be fed to one or more non-linear transformation 
layers, which are finally followed by one or more classification 
layers.

In the DDI-2013 benchmark, while the best-performing 
2013 system had reached a micro F1 of 65.1%, later 
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Figure 2. A DrugProt corpus annotation scheme in three independent phases: (1.1) CEM annotation, (1.2) GPRO annotation and (2) RE annotation. An 
example of the output of the annotation is visualized in Brat at the bottom of the figure.

approaches using different flavors of RNNs obtained micro 
F1-scores as high as 72.13 (31) and 72.55 (32). At BioCreative 
VI, the ChemProt shared task winners achieved an F-score of 
64.1, by making an ensemble system composed of RNNs and 
CNNs with other ML architectures (33).

Recently, transformer-based architectures have become 
extremely popular, producing state-of-the-art results for vari-
ous NLP tasks, including RE. It is very common to use large 
transformer-based pretrained LMs in the encoding step of the 
NLP systems, followed by simple decoding or classification 
layers. Some of the most common transformer-based pre-
trained LMs are BERT (34), BioBERT (20), SciBERT (35) 
and PubMedBERT (36). In the most usual paradigm, such 
pretrained transformers are fine-tuned, i.e. their weights are 
modified during training with the actual training data given 
for a particular task at hand. For example, by fine-tuning 
a pretrained BERT encoder on ChemProt training data, Lee 
et al. (20) achieved an F-score of 76.46 for this task. Simi-
larly, Mehryary et al. (37) outperformed the previous results 
when they achieved an F-score of 77.19 by combining a BERT 
encoder with entity-pair embeddings.

Materials and methods
DrugProt corpus generation
We have released a large manually labeled corpus with (i) 
mentions of chemical compounds and drugs (named as CEMs 
throughout this paper), (ii) mentions of genes, proteins and 
miRNAs (named as GPROs throughout this paper) and (iii) 
relations between CEMs and GPROs.

These three annotation layers were performed indepen-
dently on the same documents. First, CEMs were manually 
annotated to create the DrugProt chemical mention GS. Then, 
GPROs were manually annotated to create the DrugProt gene 
mention GS. Finally, both mention GSs were joined, and a 
third team of annotators marked the binary CEM–GPRO rela-
tions to create the DrugProt relation GS. (Figure 2). While 
marking the binary relations, annotators corrected a small 
percentage of wrongly annotated CEM and GPRO mentions.

The DrugProt corpus’s main goal is the training and eval-
uation of biomedical RE systems for extracting CEM–GPRO 
relations. Besides, it also serves to train biomedical NER sys-
tems of CEMs and GPROs. Indeed, the CEM and GPRO 
mention GSs are larger than most biomedical NER GSs.

The annotated texts consist of PubMed titles and abstracts 
in English from scientific papers published between 2005 
and 2014. A subset of these abstracts comes from the previ-
ous ChemProt–BioCreative VI task, which included abstracts 
from the CHEMDNER–BioCreative IV task for the annota-
tion of CEMs enriched with abstracts cited in the DrugBank 
database (38, 39). All the abstracts used in the previous 
ChemProt task were included in the training and development 
sets. In total, 5000 PubMed abstracts were manually anno-
tated. Further statistics and details are provided in the Results 
section. The DrugProt corpus is available on Zenodo (https://
doi.org/10.5281/zenodo.4955410).

DrugProt chemical mention GS
This GS contains the CEM mentions (chemical or drug enti-
ties), manually annotated following the DrugProt chemicals 
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Figure 3. An overview of the hierarchy of DrugProt relation types and classification considered in annotation guidelines. The elements in blue represent 
those chosen for the DrugProt task, with dark-blue indicating the classes and light-blue representing the subclasses. They were selected based on their 
impact, the number of annotated instances, the internal consistency of the relation tree and the prediction performance determined by a baseline 
system (37).

and drugs annotation guidelines. These guidelines were also 
employed in the CHEMDNER–Biocreative IV task (40). They 
were created after revising previous works, including but 
not limited to, the gene mention tasks of previous BioCre-
ative efforts (41) and the annotation rules used by Kolaric 
et al. (42) and Corbett et al. (43). They were then refined 
through iterative cycles of annotations of sample documents. 
During this iterative process, annotators incorporated their 
suggestions and guideline inconsistencies were detected and 
solved by comparing the annotation differences of several
annotators.

The annotation was carried out following the rules defined 
in the published annotation guidelines (https://doi.org/10.
5281/zenodo.4957518). These guidelines define the criteria 
for identifying CEMs, which are those nouns of specific chem-
icals, specific classes of chemicals or fragments of specific 
chemicals. General chemical concepts, proteins, lipids and 
macromolecular biochemicals were excluded from the anno-
tation scope. Finally, all mentions could be associated with 
chemical structure information to at least a certain degree of 
reliability. This implied that very general chemical concepts 
(non-structural or non-specific chemical nouns), adjectives, 
verbs and other terms (reactions and enzymes) were excluded 
from the annotation process.

Annotators were mainly organic chemistry postgraduates 
with an average experience of 3–4 years in the annotation of 
chemical names and chemical structures (44). This is neces-
sary since the process requires extensive domain knowledge 
of chemistry, chemoinformatics or biochemistry to make sure 
the annotations are correct. The annotation was exclusively 
manual to prevent potential annotation biases that could arise 
from pre-annotation automated methods. The AnnotateIt 

tool (45) was employed as the application for carrying out 
this manual process.

To evaluate the quality of the corpus and the guidelines, 
different annotators labeled the same subset of documents fol-
lowing the same guidelines. Their parallel annotations were 
then compared to compute the Inter-Annotator Agreement 
(IAA). This score allows us to interpret how independent 
annotators apply the same guidelines and is a measure of task 
reproducibility and corpus quality. In the DrugProt chemical 
mention GS, an IAA measure was conducted on a subset of 
100 documents, yielding a metric of 91% when assessing the 
exact match between mentions.

DrugProt gene mention GS
This corpus contains the PubMed abstracts manually anno-
tated with GPROs [mentions of genes, gene products (pro-
teins and RNAs), DNA/protein sequence elements and pro-
tein families, domains and complexes]. The annotation was 
carried out following the DrugProt gene and protein anno-
tation guidelines (https://doi.org/10.5281/zenodo.4957576), 
which were previously employed in the CHEMDNER-patents 
track of BioCreative V.II. For the preparation of the guide-
lines, many previous corpora were revised, including GENE-
TAG corpus (46), Gene Normalization corpus of BioCreative 
II (41), GENIA corpus (47), Yapex corpus (48), JNLPBA 
corpus (49), MedTag corpus (50), ProSpecTome corpus (51) 
and PennBioIE corpus (52). As with the CEM guidelines, the 
refined was done through an iterative process based on the 
annotation of sample by several annotators in parallel.

The annotated GPROs comprehended names, specific 
classes or fragments of genes/proteins/RNAs. Then, general 
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Figure 4. Examples of DrugProt (A) entity annotation and (B) relation annotation.

concepts (isolated terms like ‘gene’, ‘receptors’, ‘proteins’, 
‘mRNA’, ‘peptide’, ‘sequence’, ‘transcript’, ‘gene product’, 
‘domain’ and ‘isolate’), lipids and small organic molecules are 
excluded from the annotation task.

In the annotation process, eight types of GPRO mention 
were differentiated, and their annotation was exhaustive. 
Mentions not included in those classes were not annotated. 
The DrugProt gene mention GSs do not include the GPRO 
classes. These eight classes were grouped into two types:

• GPRO entity mention type 1: covering those GPRO men-
tions that can be normalized to a bio-entity database 
record. GPRO mentions of this group appear in the GS 
as GENE-Y.

• GPRO entity mention type 2: covering those GPRO men-
tions that in principle cannot be normalized to a unique 
bio-entity database record. GPRO mentions of this group 
appear in the GS as GENE-N.

The annotation process required a large domain back-
ground knowledge and usage of specialized resources. Then, 
to obtain correct, high-quality annotations, the curators had 
an academic training in biology (molecular biology and genet-
ics) or biochemistry.

DrugProt relation GS
The corpus comprises binary relation annotations between 
CEM and GPRO entities. During the annotation process, 
annotators were presented with abstracts containing entity 
mentions and were asked to mark the binary relation between 
them following the DrugProt relation annotation guidelines 
(https://doi.org/10.5281/zenodo.4957137). These guidelines 
provide curation rules to evaluate if a sentence within an 
abstract is describing a CEM–GPRO interaction and also 
include definitions to assign each identified interaction to any 
of the five classes and 16 subclasses of the corpus. The rela-
tion annotation guidelines were previously employed in the 
ChemProt–BioCreative VI task with a smaller corpus. These 
guidelines were refined after iterative cycles of annotations of 
sample documents, incorporating curators’ suggestions and 
solving annotation inconsistencies encountered when compar-
ing results from different human curators.

It is noteworthy that although the annotation adhered to 
the five classes and 16 subclasses as defined in the guidelines, 
the low frequency of particular categories within the training 

set prompted the decision to release relations for two classes 
and 11 subclasses (a total of 13 relation types). The exhaus-
tive list of classes and subclasses considered in the guidelines 
is shown in Figure 3, indicating the categories appearing in the 
published corpus. Other possible relations between CEMs and 
GPROs, such as phenotypic and biological responses, should 
not be labeled. Besides, the interactions were defined follow-
ing the concept ‘what a CEM does to a GPRO’ (CEM →
GPRO direction) and not the opposite direction (GPRO →
CEM direction) (‘what a GPRO does to a CEM’).

To ensure a consistent nomenclature and to prevent redun-
dancy in defining the relation classes, a review of various 
resources was conducted. These resources include chemical 
repositories that integrate chemical-biology information, such 
as DrugBank (38, 39), the Therapeutic Targets Database (53) 
and ChEMBL (54). In addition, the assessment took into 
account the BioAssay Ontology (BAO) (55), pre-existing 
formalizations for the annotation of relations like the bio-
logical expression language (BEL) developed for Track 4 of 
the BioCreative challenge (56), curation guidelines for tran-
scription regulation interactions (DNA-binding transcription 
factor–target gene interaction) and SIGNOR, a database of 
causal relations between biological entities (57).

These resources were particularly important for different 
branches of the relation trees. For instance, for the set-up 
of the direct-regulator subclasses, SIGNOR, ChEMBL, 
BAO and DrugBank resources played a key role. For the
indirect regulator subclasses, BEL, curation guidelines for 
transcription regulation interactions and SIGNOR were more 
relevant. In particular, BEL defines five classes of casual rela-
tions between a subject and an object term, which heavily 
influenced the relationship structure of indirect regulations. 
Additionally, the UPHAR/BPS Guide to Pharmacology in 
2016 (58) determined the subclasses related to pharmacolog-
ical modes or action.

The annotation process required extensive domain back-
ground knowledge. Annotators had an academic training in 
chemistry, biology (including molecular biology and genetics) 
and biochemistry. Moreover, their expertise extended to areas 
such as medicinal chemistry and pharmacology, ensuring the 
accuracy and high quality of the annotations. Regarding the 
IAA, the increased number of annotators posed challenges 
in calculating traditional IAA metrics. Therefore, a cross-
validation process was employed, in which a subset of the 
documents was validated by a second, more experienced 
annotator.
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Figure 5. DrugProt shared task overview. Training phase (1), test phase (2,3), results (4) and impact (5).

DrugProt corpus format
The DrugProt corpus is comprised of three fundamental com-
ponents: the PubMed abstracts, the entity annotations (cate-
gorized as CEM and GPRO) and the relation annotations.

The PubMed abstracts are presented in a raw text format 
and are encoded using UTF-8. These abstracts are orga-
nized within a tab-separated text file, containing three distinct 
columns: the article identifier (referred to as PMID or PubMed 
identifier), the title of the article and the article’s abstract itself.

The entity mentions are provided in a tab-separated file 
with six columns. These columns have the following informa-
tion: the article identifier (PMID), a term number (pertinent 
to the given record), the type of entity mention (CHEMICAL, 
GENE-Y and GENE-N), the start-offset (indicating the index 
of the first character of the annotated span in the text), the 
end-offset (the index of the first character after the annotated 
span) and the text span of the annotation. Each individual line 
in the file corresponds to an entity uniquely identified by its 
PMID and the term number. An example of one file can be 
seen in Figure 4A.

The file containing relation annotations consists of 
columns separated by tabs representing the article identifier 
(PMID), the DrugProt relation type, the relation argument 1 
(of type CHEMICAL) and the relation argument 2 (of type 
GENE). Each line within this file represents a relation, and 
each relation is identified by the PMID, the relation type and 
the two related entities, as shown in Figure 4B.

For the DrugProt shared task, the DrugProt corpus was 
partitioned into three distinct subsets: training (consisting of 
3500 abstracts), validation (comprising 750 abstracts) and 
test (also containing 750 abstracts). The split was random, 
while ensuring that all abstracts released during the prior 
ChemProt task were included within either the training or val-
idation subsets. The DrugProt corpus is available on Zenodo 
(https://doi.org/10.5281/zenodo.4955410). 

DrugProt Large Scale corpus generation
Given the substantial costs linked to the manual generation of 
annotated datasets, previous research has explored alternative 

strategies, such as the previously mentioned silver standard 
corpora. The CALBC project (14) annotated 150 000 Medline 
abstracts using five automatic systems with different coverage 
and purposes. These systems were based on terminological 
resources rather than real-world data, and due to the absence 
of a pre-existing GS for system evaluation, the quality of the 
silver standard was unclear.

To address these challenges, the DrugProt Large Scale cor-
pus was created, encompassing 2 366 081 English PubMed 
abstracts, including titles, with annotated CEM and GPRO 
entities. This corpus was developed through a document selec-
tion process that combined MeSH queries, outcomes of NER 
systems applied across the entire PubMed database, document 
classifiers’ results and database metadata, guided by 10 spe-
cific criteria. These 10 selection criteria were tailored to aggre-
gate pertinent abstracts covering several domains, including 
gene expression, pharmacological action, viral zoonoses, rare 
diseases and coronavirus, all of which featured mentions of 
CEM–GPRO interactions. The full description of the docu-
ment selection criteria is available on Zenodo (https://doi.org/
10.5281/zenodo.5656991).

This document selection criterion allows having a large-
scale corpus useful for many purposes including drug dis-
covery, repurposing, design and metabolism, as well as for 
exploring drug-induced adverse reactions and off-target inter-
actions, among other topics. The abstracts were downloaded 
on 17 June 2021 using the PubMed Bio.Entrez package. The 
pipeline used to download the abstracts is stored at GitHub 
(https://github.com/tonifuc3m/pubmed-parser).

The mention annotations were generated by running an 
NER tagger that adds context after the sentences to be tagged 
as this is shown to increase tagging performance (6). Also, 
for NER tagging the GENE-N and GENE-Y mentions were 
both converted to plain GENE mentions. This simplification 
was adopted to avoid unnecessary complexities in predicting 
which gene mentions can be normalized and which cannot. 
The NER tagger was evaluated on the test set of the Drug-
Prot mention GSs. The trained NER models selected for large 
corpus tagging obtained a 92.38 exact match F1-score on 
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Table 1. DrugProt GS statistics

Training Development Test Total

Abstracts 3500 750 750 5000

Relations ANTAGONIST 972 218 154 1344
AGONIST 658 131 101 890
AGONIST-ACTIVATOR 29 10 0 39
AGONIST-INHIBITOR 13 2 3 18
DIRECT-REGULATOR 2247 458 429 3134
ACTIVATOR 1428 246 334 2008
INHIBITOR 5388 1150 1051 7589
INDIRECT-DOWNREGULATOR 1329 332 304 1965
INDIRECT-UPREGULATOR 1378 302 277 1957
PART-OF 885 257 228 1370
PRODUCT-OF 920 158 181 1259
SUBSTRATE 2003 494 419 2916
SUBSTRATE_PRODUCT-OF 24 3 10 37
Total 17 274 3761 3491 24 526

Entities GENE 43 255 9005 9515 61 775
CHEMICAL 46 274 9853 9434 65 561
Total 89 529 18 858 18 949 127 336

the CEM mentions and a 90.34 exact match F1-score on the 
GPRO mentions.

The DrugProt Large Scale corpus consists of all abstracts 
selected on the basis of the aforementioned criteria, as long as 
they contain at least one CEM and one GPRO mention. The 
corpus has the same format as the DrugProt corpus (exclud-
ing the relation annotations) and it is available on Zenodo 
(https://doi.org/10.5281/zenodo.5119878).

DrugProt shared task description
The BioCreAtIvE (Critical Assessment of Information Extrac-
tion systems in Biology) challenge evaluation consists of a 
community-wide effort for evaluating text mining and infor-
mation extraction systems applied to the biological domain. 
Specifically, the DrugProt–BioCreative VII challenge evaluates 
systems that extract relations between chemical compounds 
or drugs and genes, proteins or miRNA in biomedical litera-
ture. In the shared task context, several resources have been 
developed: the DrugProt corpus (that contains three GSs), the 
DrugProt Large Scale corpus (containing two silver standard 
corpora), the official evaluation script (specifically developed 
for a unified evaluation of participating systems), a CodaLab 
evaluation page and two baseline systems.

Participants were asked to develop models for two sepa-
rate subtasks: the Main DrugProt (DrugProt-M) track, which 
focuses on evaluating ER systems with high predictive per-
formance, and the Large Scale DrugProt (DrugProt-L) Track, 
where participants’ systems are required to process large vol-
umes of data volumes. The main goal of DrugProt-L is to 
evaluate participants’ design strategies for efficiently handling 
large datasets and to examine how these strategies impact 
predictive performance.

The challenge comprises both a training and a test phase. 
During the training phase, participants use the DrugProt cor-
pus to develop their ER systems by means of supervised tech-
niques. Then, in the evaluation phase, participants apply their 
systems to predict relations within a collection of PubMed 
abstracts that have only mention annotations. These predic-
tions will be evaluated later on the CodaLab evaluation page 
and compared with baselines.

DrugProt yields two main outcomes: first, participants’ 
large-scale predictions contribute to the creation of a compre-
hensive knowledge graph; second, their systems undergo eval-
uation, ensuring that future RE systems can also be assessed 
on the CodaLab platform. The overview of the challenge in 
terms of phases, tracks and exploitation of results is shown 
in Figure 5.

Evaluation
During the training phase, all participants were given the 
abstracts, GPRO, CEM and relation manual annotations for 
the 4250 documents of the training and development sets.

During the test phase, DrugProt-M track participants 
received as well the abstracts, GPRO and CEM annotations of 
a set of 10 750 documents (including the test set and 10 000 
background documents). The test set has manual annota-
tions, while the background documents have automatic entity 
annotations and are provided to prevent manual annota-
tions by participating teams. DrugProt-M track participants 
must return their automatic predicted relations for the 10 750 
documents—five prediction runs are allowed per participating 
team. Finally, the predicted relations of the test set documents 
are compared against the manual, GS relations.

On the other hand, during the test phase, DrugProt-L 
track participants needed to make predictions for 2 366 081 
documents, including the 750 test set documents.

The official evaluation metrics are micro-averaged preci-
sion, recall and F1-score. Due to the particular impact of the 
different relation types, detailed granular results by relation 
type, computed with the official evaluation kit, are provided 
as well.

All relations are binary and have three components: a 
CEM, a GPRO and a relation type. However, it is possible 
for a given CEM–GPRO pair to have more than one valid 
relation, although this situation is uncommon in the test set. 
In this case, all valid relation types must be predicted and they 
are evaluated independently.

The evaluation script is available on GitHub (https://
github.com/tonifuc3m/drugprot-evaluation-library). In addi-
tion, the DrugProt-M track setting is maintained on CodaLab, 
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Figure 6. (A) Zipfs plot of all DrugProt GPRO entities, (B) all DrugProt 
CEM entities from GS and (C) Zipf plot of CEM–GPRO related pairs in the 
DrugProt corpus.

and therefore future teams can be evaluated on the same 
conditions as original shared task participants.

Baseline systems
To compare with the participants’ systems, two baselines are 
proposed. The first baseline is a maximum-recall system that 
considers every sentence co-mention of CEMs and GPROs as 
a positive relation. All possible relation types are assigned to 
each co-mention.

Figure 7. Frequency overlap between different relation types.

The second baseline, called the ‘Turku-BSC system’, is 
obtained by an RE system that we developed for the DrugProt 
challenge. The system is similar to the RE systems devel-
oped by Mehryary et al. (37) and utilizes a pretrained BERT 
transformer (a bioBERT-base model, retrievable from https://
huggingface.co/dmis-lab/biobert-v1.1/tree/main) for encoding 
the input texts, along with a single decision layer with soft-
max activation for classification. In contrast to many previous 
RE systems that focus on a single sentence at a time (and 
thus fail to predict any cross-sentence relations), we allow 
ML examples to be generated even if the two entities (a CEM 
and a GPRO) are located in different sentences. This allows 
us to train with and extract both inner-sentence and cross-
sentence relations. More specifically, we generate an example 
for two candidate-named entities, if the two mentions and the 
words before, after and between them can fit into a window 
of 128 BERT tokens. The window size is one of the optimized 
hyper-parameters and it directly affects the prediction perfor-
mance, as well as the number of generated examples. Since 
an input text can include more than one CEM and/or GPRO 
entities, and because the RE task is performed similarly to 
a text classification task, we mark the beginning and end of 
entities of focus using unused tokens in the BERT vocabulary 
(e.g. [unused1]insulin[unused2]). We have previously shown 
that this marking approach slightly outperforms the masking 
approach (i.e. replacing entity names with predefined place-
holders) (37). Finally, the system is optimized using a grid 
search to find optimal values for hyper-parameters including 
window size, learning rate, mini-batch size and number of 
training epochs. This is done by cycles of training the system 
on the training set with a set of hyper-parameters, predicting 
the development set and evaluating its performance.

Results
DrugProt corpus
The DrugProt corpus contains manually annotated mentions 
of CEMs, GPROs and the binary interactions existing between 
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Table 2. General statistics of the DrugProt Large Scale dataset provided to participants

 Number of entities

Subset Number of documents GPRO CEM Total

Background set of DrugProt-M track 10 000 157 523 134 333 291 856
Original PubMed dump 3 966 792 47 622 872 22 993 509 70 616 381
DrugProt Large Scale corpus 2 366 081 33 578 479 20 415 123 53 993 602

them. This corpus is provided together with annotation guide-
lines. It is relevant for developing gene (GPRO) and drug 
(CEM) recognition systems, as well as CEM–GPRO RE sys-
tems. In addition, data curators and the non-English NLP 
community seeking adaptation to other languages can benefit 
from this resource, among other potential user groups.

Table 1 presents an overview of the DrugProt corpus. It 
contains 24 526 manually annotated relations, divided into 13 
relation types of biological significance, 61 775 manual GPRO 
entity annotations and 65 561 manual CEM entity annota-
tions. This means that the gene and chemical mention GSs are 
among the largest manually annotated entity corpora in the 
biological domain and offer an opportunity to develop and 
evaluate the better NER systems.

We carried out an analysis to provide an overview of the 
content of the DrugProt corpus. Figure 6 shows (A) the sta-
tistical profile of the CEM entities and (B) the GPRO entities 
present in the corpus by examining the mention distribution. 
It reflects the typical behavior of the token frequencies in a 
corpus. Most CEMs and GPROs in the DrugProt corpus have 
a low frequency. Indeed, 71.1% of GPROs has a frequency 
of 1 or 2, and the percentage for CEMs is 65.4%. Addition-
ally, CEM mentions tend to be longer than GPRO ones: the 
longest GPRO mention has 105 characters, and the median 
length is 6. The longest CEM mention has 174 characters, 
and the median is 9.

We have also analyzed the overlap between both men-
tion types. This can happen, since the mention annotation 
was independent for the two entity types. In total, 659 men-
tions are annotated as CEM and GPRO. Some overlapping 
entities are ‘angiotensin’, ‘oxytocin’, ‘Ang II’ (an abbreviation 
of angiotensinII), ‘GnRH’, ‘vasopressin’, ‘AVP’, ‘somatostatin’ 
and ‘bradykinin’.

In the case of the DrugProt relations, the distribution 
of CEM–GPRO relation pairs follows the expected pat-
tern of token frequency distribution in a corpus, as shown 
in Figure 6C. The majority of entities exhibit low frequencies, 
with 94.2% of CEM–GPRO pairs having frequencies of 1 or 
2. Conversely, a small subset of pairs is more prevalent. For 
a more detailed insight, tables presenting the most frequent 
pairs are provided in the Supplementary material.

Finally, some relations have multiple relation types. There 
are 249 CEM–GPRO pairs with two annotated relation labels. 
Figure 7 shows that the relation types that overlap the most 
are activator and direct-regulator, followed by antag-
onist and direct-regulator. The DrugProt corpus is avail-
able on Zenodo (https://doi.org/10.5281/zenodo.4955410).

DrugProt Large Scale corpus
Real-world applications in NLP often demand the processing 
of extensive and diverse datasets. Therefore, the development 

of scalable pipelines that can handle big collections of docu-
ments is crucial. This issue is particularly relevant in clinical 
applications, where the lack of scalability has been identified 
as a barrier to NLP progress (5).

Nonetheless, biomedical NLP challenges and shared tasks 
frequently provide corpora of limited or moderate sizes, typ-
ically focused on specific subdomains, primarily due to the 
significant expenses linked to the manual creation of anno-
tated datasets. To overcome this limitation, silver standards 
have been introduced, enabling the training of models with 
improved performance across several tasks (41, 59, 60).

The DrugProt Large Scale corpus contains automatically 
annotated mentions of CEMs and GPROs in 2 366 081 
PubMed abstracts. Then, it is directly relevant to the devel-
opment of NER pipelines. Besides, the DrugProt Large Scale 
corpus is distributed as part of the Large Scale DrugProt 
track. Participants of this competition must generate rela-
tion predictions in this large, heterogeneous set of docu-
ments. The goal here is 3-fold: first, to assess whether RE 
pipelines are capable of scaling up to process large literature 
volumes; second, to compare the prediction performance dif-
ference between scalable and non-scalable systems; finally, to 
merge the participants’ relation predictions and generate a 
knowledge graph useful for different topics, covered in the 
large-scale corpus document selection (drug discovery, drug 
design, off-target interactions, etc). A description of the gen-
erated knowledge graph and the potential uses is presented in 
the section ‘DrugProt Large Scale Silver Standard Knowledge
Graph’.

For the generation of the DrugProt Large Scale corpus, 
3 966 792 PubMed abstracts were selected according to the 
document selection criteria. After filtering out the documents 
with an empty title, or empty abstract body, or that did not 
have at least one sentence with a GPRO and a CEM, the 
remaining number of PubMed abstracts is 2 366 081. In them, 
there are 33,578,479 GPRO and 20 415 123 CEM mentions. 
Table 2 contains the overview statistics of the DrugProt Large 
Scale corpus.

Figure 8 shows that both CEM and GPRO entities within 
the silver standard follow the typical behavior in terms of the 
token frequency of a corpus. Although a small number of 
entities are prominently represented, the majority of GPRO 
mentions (73.2%) occur only once or twice, and similarly, 
the majority of CEM mentions (71.6%) have a frequency of
1 or 2. 

In terms of mention length, it is remarkable that CEM 
mentions are notably longer than GPRO mentions, a pattern 
consistent with the GSs. While the longest GPRO mention 
spans 155 characters with a median length of 5, the longest 
CEM mention extends to 508 characters, with a median 
length of 8. The DrugProt Large Scale corpus is available on 
Zenodo (https://doi.org/10.5281/zenodo.4955410). 
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Figure 8. Zipf plot of GPRO (A) and CEM (B) entities in the DrugProt 
Large Scale corpus.

Figure 9. Example of JSON annotation of DrugProt Silver Standard 
corpus.

DrugProt Large Scale Silver Standard Knowledge 
Graph
DrugProt offers a unique opportunity for the creation of 
a large and high-quality silver standard knowledge graph 
focused on CEM–GPRO relations. This resource is created 
through the large amount of data within the DrugProt Large 
Scale corpus, incorporating CEM and GPRO entity pre-
dictions from both the silver standard and the large-scale 
track participants. It constitutes an enormous, high-quality 
resource of automatically annotated CEM–GPRO relations. 
Each relation is paired with a corresponding precision score, 

Table 3. DrugProt Silver Standard Knowledge Graph overview statistics

Relation type Predictions 
Unique predictions 
(knowledge graph edges)

ANTAGONIST 4 597 943 533 536
AGONIST 3 315 925 463 888
AGONIST-ACTIVATOR 25 596 6468
AGONIST-INHIBITOR 36 171 4683
DIRECT-REGULATOR 13 572 608 2 425 063
ACTIVATOR 13 727 350 2 034 690
INHIBITOR 34 863 037 3 636 934
INDIRECT-DOWNREGULATOR 18 066 689 1 882 009
INDIRECT-UPREGULATOR 19 091 394 2 277 607
PART-OF 17 711 521 2 174 233
PRODUCT-OF 7 341 295 1 248 229
SUBSTRATE 14 497 706 2 668 567
SUBSTRATE_PRODUCT-OF 16 886 11 499
Total 146 864 121 19 367 406

meticulously calculated using DrugProt’s GS test set. This fea-
ture empowers the capacity to selectively filter or intelligently 
merge diverse relation predictions, enhancing the precision 
and customization of the knowledge graph’s insights.

The DrugProt Large Scale Silver Standard Knowledge 
Graph is a relevant resource for RE system developers: it con-
stitutes an extensive training and evaluation dataset. It can 
also significantly impact the data curator community since 
it is a valuable starting point to generate manual CEM–
GPRO annotations with minimum effort; and the database 
community because it is ready to be consumed by biological 
databases.

The information in the DrugProt Large Scale Silver Stan-
dard Knowledge Graph is ready to be used as a knowledge 
graph. In the graph, the CEM and GPRO entities are nodes 
and the predicted relations are edges. Every node has a unique 
weight based on the combination of the micro-average pre-
cisions of every system that predicted the edge. We foresee 
its impact to explore the CEM–GPRO relations described in 
the literature or to predict novel chemical–gene interactions, 
among other uses.

This knowledge graph is a weighted bipartite graph since 
it has two types of nodes, CEM and GPRO; directed because 
relations go from CEM to GPRO; and with 13 types of edges, 
one per relation type.

In addition to this ready-to-use knowledge graph, the 
information stored in this resource allows the creation of sub-
graphs per relation type. Also, we suggest the creation of 
another knowledge graph in which the nodes are PubMed 
records, and two PubMed records are connected with an edge 
if they share a CEM or GPRO entity. The nodes would have 
the assigned MeSH terms as node attributes. To this extent, 
we have released the list of MeSH terms per each PubMedID 
included in the DrugProt Silver Standard Knowledge Graph.

As a showcase, we analyze the antagonist subgraph. It is 
a sparse graph with 95 812 nodes and 274 401 edges. Indeed, 
the clustering coefficient is 0.04, and the transitivity is 0.01. 
The graph is dissortative, as biological networks tend to be, 
being the assortativity degree −0.1. It has one giant component 
with 92 267 nodes, and 1478 disconnected components with 
a few nodes (mostly, 2 or 3) and a diameter of 15.

The Silver Standard Knowledge Graph format follows a 
similar structure as all other DrugProt corpora. Indeed, the 
abstracts and entity files are the DrugProt Large Scale corpus. 
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Table 4. DrugProt team overview

ID Team Name Affiliation Country Tasks Ref. Tool URL

15 Humboldt Humboldt-Universit ̈at Germany M (61) (62)
18 NLM-NCBI National Institutes of Health USA M/L (63) –
13 KU-AZ Korea University, AstraZeneca, AIGEN 

Sciences
South Korea, UK M/L (64) –

7 UTHealth-CCB University of Texas USA M/L (65) –
21 bibliome INRAE France M (66) (67)
3 CU-UD University of Delaware USA M/L (68) (69)

29 TTI-COIN Toyota Technological Institute Japan M (70) -
4 good team Guangdong University of Foreign 

Studies
China M/ – –

23 FSU2021 Florida State University USA M/L (71) (72)
14 HY-NLP Hanyang University South Korea M – –
28 NVhealthNLP NVIDIA USA M/L (73) (74)
16 HITSZ-ICRC Harbin Institute of Technology China M (75) –
6 Saama Research Saama Technologies India M – –

10 Stelios – Greece M – –
5 The Three Musketeers Fudan University China M/L – –
2 USMBA_UIT Sidi Mohamed Ben Abdellah University Morocco M (76) (77)

19 NLPatVCU Virginia Commonwealth University USA M (78) (79)
27 BIT.UA University of Aveiro Portugal M (80) –
25 Jungfraujoch University of Zurich & ETH Zurich Switzerland M – (81)
24 CLaC Concordia University Canada M (82) –
26 catalytic Catalytic DS, Inc. United States M (83) –
8 DigiLab-UG University of Geneva Switzerland M (84) –
1 Trerotola University of Brescia Italy M – –

17 BHAM University of Birmingham UK M – -
11 LasigeBioTM LASIGE Portugal M (85) (86)
9 TMU_NLP Taipei Medical University Taiwan M/L (87) –

12 Elsevier Health D.S. Elsevier USA M – –
20 Orpailleur Université de Lorraine, CNRS France M – (88)
30 NetPharMed University of Helsinki Finland M (89) –
22 CanSa Al Baha University Saudi Arabia M – –

A/I stands for academic or industry institution. In the Tasks column, M stands for the Main DrugProt track and L for the Large Scale DrugProt track. The 
teams are sorted based on their performance in the M-track.

However, the relation annotations are stored in JSON files 
with the structure shown in Figure 9. Each abstract is repre-
sented by a JSON file, with relation annotations following the 
same tab-separated format as the DrugProt GS. These annota-
tions serve as keys, while the corresponding values are arrays 
of predictions denoted by ‘team’, ‘run’ and ‘p’ (micro-average 
precision on the test set for that specific run).

The complete DrugProt Silver Standard Knowledge Graph 
contains 53 993 602 nodes (CEM and GPRO entities) and 
19 367 406 edges (unique CEM–GPRO relation predictions). 
In total, there are 146 864 121 predictions. Then, on average, 
every relation has 7.58 individual predictions. The average 
degree coefficient is 0.71 and the networks are highly sparse. 
Table 3 contains the number of predictions and knowledge 
graph edges per relation type.

The DrugProt Large Scale Silver Standard Knowledge 
Graph is available on Zenodo (https://doi.org/10.5281/
zenodo.7252201). As an additional resource, we used the 
DrugProt NER Taggers and the Turku-BSC RE system to 
generate GPRO, CEM and relation annotations for the full 
PubMed dump from December 2021 (https://zenodo.org/
record/7 252 238).

Shared task participation overview
The task impact in terms of participation has been significant. 
A total of 30 teams, comprising 110 individuals, submitted 
107 runs for the DrugProt-M track, while 9 teams submitted 

21 runs for the DrugProt-L track. This level of engagement 
represents the highest participation observed in a BioCreative 
task to date. A summarized breakdown of the participating 
teams is shown in Table 4, including the tasks they contributed 
results to and links to associated software when available, 
please refer to Table 4.

Evaluation results
In the DrugProt-M track, the outcomes achieved by all teams 
are presented in Table 5. The Humboldt team obtained 
the top-scoring results with a micro-average F1-score of 
0.797311. In a run, they also obtained the highest micro-
average precision (0.815075). On the other hand, the 
FSU2021 team achieved the highest micro-average recall, 
reaching a score of 0.824355.

Table 6 presents the DrugProt-L track results. This task 
aimed to analyze whether RE systems could maintain high 
performance while processing large volumes of input data. 
The results indicate that this is indeed the case, as the perfor-
mance discrepancies between the Large Scale and Main Drug-
Prot tracks are minimal. For instance, the NLM-NCBI team 
achieved the highest micro-average F1-score of 0.788602 in 
the Large Scale DrugProt track, while they obtained 0.794796 
in the Main DrugProt track.

Although the DrugProt-L track was not focused on ana-
lyzing prediction times, but on assessing the feasibility of 
adapting the models to handle large volumes of data without 
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Table 5. Best run results of the DrugProt-M track.

ID Team Run Precision Recall F1-score

15 Humboldt 1 0.7961 0.7986 0.7973
18 NLM-NCBI 5 0.7847 0.8052 0.7948
13 KU-AZ 2 0.7972 0.7817 0.7894

7 UTHealth 2 0.8044 0.7496 0.776
21 bibliome 2 0.7546 0.7966 0.775

3 CU-UD 3 0.7709 0.7771 0.774
29 TTI-COIN 1 0.7493 0.7776 0.7632

4 good team 5 0.7344 0.794 0.763
23 FSU2021 4 0.754 0.751 0.7525
14 HY-NLP 1 0.7122 0.792 0.75
28 NVhealthNLP 4 0.7732 0.7249 0.7483
16 HITSZ-ICRC 4 0.7671 0.7183 0.7419

6 Saama Research 1 0.7406 0.7361 0.7383
10 Stelios 4 0.7315 0.7261 0.7288

5 The Three 
Musketeers

1 0.6993 0.7564 0.7268

2 USMBA_UIT 4 0.7569 0.6745 0.7133
19 NLPatVCU 1 0.7335 0.6908 0.7115
27 BIT.UA 2 0.7003 0.7229 0.7114
25 Jungfraujoch 1 0.7798 0.6201 0.6908
24 ClaC 3 0.6444 0.7014 0.6717
26 catalytic 1 0.6746 0.5822 0.625

8 DigiLab-UG 4 0.4507 0.8794 0.5959
1 Trerotola 1 0.3149 0.8378 0.4578

17 BHAM 1 0.2305 0.3673 0.2833
11 LasigeBioTM 1 0.369 0.1865 0.2478

9 TMU_NLP 2 0.5678 0.1224 0.2013
12 Elsevier 1 0.5947 0.0576 0.105
20 Orpailleur 3 0.3078 0.0438 0.0767
30 NetPharMed 1 0.0395 0.1573 0.0631
22 Cansa 1 0.0 0.0 0.0

Max-recall baseline 1 0.0022 1.0 0.0044
Turku-BSC system 1 0.755 0.734 0.744

Best results bolded.

experiencing a significant decrease in performance, many par-
ticipants have reported their prediction times. Reported times 
vary based on available computational resources, ranging 
from 9 h reported by KU-AZ using 16 GPUs concurrently, 
to 40 h reported by TMU_NLP, 53.5 h reported by UTHealth 
and even 5 days employed by NLP or FSU2021.

Analyzing system performance across different relation 
types is of great significance to align ER systems with their 
final applications. Figure 10 illustrates the participant’s F-
score results for each of the corpus relation types. In the graph, 
each point represents the result of each run of the system 
participants. The top-performance team result is shown as 
a golden bar with a label, while the average value for each 
relation type is represented in gray. It is observed that the 
categories antagonist, inhibitor, agonist and activator
exhibit more favorable average prediction results across all 
participants, with the best team in each category achieving 
performance over 0.83. The performance varies depending on 
the relation type, and those categories that had a very small 
number of samples in the test set have been excluded from 
the graph since the results are not completely representative. 
The detailed numerical results, including precision and recall 
values, can be found in the Supplementary material of this 
publication.

Participating systems—methodological analysis
DrugProt participants generally treat the RE problem as a 
sentence classification task. The most common pipeline for 

Table 6. Large Scale DrugProt track results

ID Team Run Precision Recall F1-score

18 NLM-NCBI 1 0.778186 0.789112 0.783611
2 0.772977 0.804871 0.788602
3 0.775049 0.795702 0.78524
4 0.767621 0.798854 0.782926
5 0.747794 0.825788 0.784858

13 KU-AZ 1 0.760092 0.755301 0.757689
2 0.764415 0.752149 0.758232
3 0.767303 0.736963 0.751827

7 UTHealth-CCC 1 0.763804 0.713467 0.737778
2 0.77619 0.747278 0.76146
3 0.794856 0.752722 0.773216
4 0.800799 0.746418 0.772653
5 0.797194 0.748997 0.772345

3 CU-UD 1 0.746575 0.780802 0.763305
4 good team 1 0.720129 0.766762 0.742714

23 FSU2021 1 0.70657 0.727221 0.716747
28 NVhealthNLP 1 0.732492 0.332665 0.457537
9 TMU_NLP 1 0.432432 0.848138 0.572811

2 0.450187 0.828653 0.583417
3 0.437236 0.799427 0.565292

5 The Three 
Musketeers

1 0.693691 0.58596 0.63529

Max-recall baseline 1 0.0022 1.0 0.0044
Turku-BSC system 1 0.755 0.734 0.744

Best results bolded.

generating a CEM–GPRO relation prediction is to (i) split the 
input text into sentences, (ii) select those sentences that con-
tain a marked CEM and a marked GPRO, (iii) tokenize the 
sentence into corresponding tokens (in general, subwords), 
(iv) pass the tokens to a transformer-based LM and (v) input 
the first output of the transformer (the [CLS] token) into a sim-
ple classifier. The classifier would then return either a negative 
prediction (no relation is detected) or categorize the relation 
into one of the 13 DrugProt relation types.

Several modifications to this common pipeline are fre-
quently employed by participants, and some of the most 
significant ones are detailed below:

Knowledge base information: teams that integrated knowl-
edge bases in the information encoding step reported an 
increase in performance (61,70).

NLP components: beyond sentence splitting and tokeniza-
tion, there is a rich diversity in the NLP components used 
by DrugProt participants. It is exciting to observe the diver-
gence in the treatment of the named entities. Before passing 
the tokens to the LM, it is common to substitute the CEM 
and GPRO entities with standard tokens (masking) or add 
flag tokens before and after them (marking). These techniques 
are intended to help the LM to identify the entities involved 
in the relation. Figure 11 contains an overview of the NLP 
components employed, including the entity masking/marking 
strategy. 

Transformer-based LMs: the diversity in transformer-based 
LMs experienced by the NLP community in recent years is evi-
dent in DrugProt. A common difference among participants 
consists of changing the LM, and many of them compared 
the performance variations (e.g. DigiLab-UG (84)). Figures 12 
and 13 contain an overview of the system types used by the 
participants, with the different LM included, with BioBERT 
and PubMedBERT being the most popular ones. 

Classifier layer: implementing a linear or a softmax clas-
sifier to categorize the sentence is common. The three
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Figure 10. Graphical representation of participants’ results in granular format for the DrugProt-M track.

Figure 11. An overview of NLP components used by DrugProt participants: there is no information about team 16.

best-performing teams in the task use this strategy, indeed. 
However, some exciting variations of this strategy include also 
attention, long short-term memory or CNN layers after the 
transformer output.

Post-processing: it is also common to include simple post-
processing rules such as removing common false positives 
(FPs) by stopwords detection.

Ensemble: it is the most popular and impactful modifica-
tion. A significant performance increase is detected by many 
DrugProt participants when ensembling different RE systems. 
The simplest ensemble scenario involves having the same 
architecture trained with N different hyper-parameter initial-
izations. For prediction, the same sentence passes through 
all the models. Since we end up with N predictions for each 
sentence, a voting strategy is applied to get one single pre-
diction. Majority voting is the most common voting strategy. 
Other, more complex ensemble scenarios include smart vot-
ing strategies based on clustering (FSU2021 (71)) or using a 
multilayer perceptron with a softmax layer to combine the 

different outputs (CU-UD (68)). However, these approaches 
did not overcome a majority voting strategy.

For RE system training, most participants opted for using 
only the DrugProt GS and varying the architecture or hyper-
parameters. Figure 14 contains an overview of the training 
and input information employed by DrugProt participants. 

Some noteworthy exceptions are the KU-AZ team, which 
generated silver standard predictions with an initial model and 
used it to retrain a larger model, and the USMBA_UIT team, 
which combined annotated datasets from different sources to 
create a pretrained model through multitask learning.

Model adaptation for large corpora
In terms of system adaptions for the DrugProt-L track, most 
teams opted for simpler architectures to accelerate the predic-
tion process. They relied on more efficient pretrained models 
such as PubMedBERT or BioBERT, often using their ‘base’ 
versions and employing data-slicing strategies to distribute 
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Figure 12. An overview of NLP systems used by DrugProt participants (part I): there is no information about team 16.
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Figure 13. An overview of NLP systems used by DrugProt participants (part II): there is no information about team 16.
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Figure 14. An overview of training information and datasets used by DrugProt participants: there is no information about team 16.

the computational load across multiple GPUs in parallel when 
available.

Among the participants, NLM-NCBI achieved the best 
performance results using an ensemble strategy similar 
to the one they used in DrugProt-M, but with standard 
losses for model weight adjustment. Conversely, the KU-
AZ team chose not to use ensemble strategies due to 
their computational demands, opting instead for predic-
tion with a single model and preprocessing beforehand. The 
TMU_NLP team implemented interesting candidate sentence 
selection strategies to improve the efficiency of their infor-
mation extraction systems. Additionally, they incorporated 
vector distance-based features to identify potential words 
within sentences related to the relations that needed to be
predicted.

Participating systems—top 3 participants 
description
The system with the highest micro-F1 score was Hum-
boldt and they also obtained the highest F1-score for
direct-regulator, indirect-upregulator, inhibitor and
product-of relation types. The authors defined the task as a 
sentence classification problem. The sentence was input to the 
biomedical pretrained transformer LMs RoBERTa-large-PM-
M3-Voc. The classification was performed with a linear layer 
applied to the output of the transformer for the [CLS] token 
of the LM. Entity descriptions from the CTD database were 
used to enrich the model information. The best results were 
obtained by ensembling 10 models by averaging the predicted 
probabilities of every instance.

The NLM-NCBI team obtained the second-highest micro 
F1-score and the highest F1-score for the relation types
antagonist, agonist, agonist-inhibitor, substrate and
part_of. They tested two approaches to solving the challenge: 
text classification and sequence labeling. Again, biomedical 
pretrained LMs are used for both frameworks, including, 
but not only, PubMedBERT. On top of the LM, a softmax 
layer was applied to the output of the transformer for the 
[CLS] token to perform text classification. In contrast, for 
the sequence labeling approach, a fully connected layer and a 
softmax classification layer were applied to obtain predictions 
for each token. The best results were obtained by ensembling 
with the ‘majority voting’ strategy all the text classification 
and sequence labeling models.

Finally, the team KU-AZ obtained the third-highest micro 
F1-score and the highest F1-score for the relation types
indirect-downregulator and agonist-inhibitor. They 
augmented the DrugProt dataset by predicting labels with 
transformer models and built a larger dataset refined with a 
knowledge base. Then, the challenge was modeled as a text 
classification task. Instances were passed through a biomedi-
cal pretrained LM, and a linear classification layer was applied 
to the output of the transformer for the [CLS] token. Finally, 
models were ensembled. The authors report that data augmen-
tation has worked remarkably well for relation types with few 
examples.

Error analysis of the participating systems
In this section, we have compared the participants’ predic-
tions in the DrugProt-M track with the test set of the DrugProt 
corpus. We analyse two types of errors: false negatives (FN), 
where a relation is present in the DrugProt corpus but not 
in participants’ predictions, and FPs, where relations are pre-
dicted by the participants but not found in the DrugProt 
corpus. In particular, we have analyzed the three main aspects: 
(i) the entities involved in the FN and FP, (ii) the relation types 
attributed to the FN and FP and (iii) the balance between 
precision and recall for various relation types.

Most common entity errors
Table 7 presents some of the entities that are frequently associ-
ated with a higher number of prediction errors. Among these 
entities, several with the highest frequencies in the test set, 
such as ‘Ca2+’, ‘N’ or ‘COX-2’, are also frequently found 
in relations that were inaccurately predicted. This behavior 
is reasonable as their higher occurrence in the corpus might 
lead to a greater likelihood of errors. However, other enti-
ties like ‘sulindac’ and ‘BAY 50-4798’, which have lower 
frequencies in the corpus, also appear in the list of most 
common errors. This phenomenon can be attributed to the 
fact that mentions similar to those are linked with different 
relation categories in the training and test sets, posing a chal-
lenge for systems to generalize effectively. For instance, the 
mention ‘BAY 50-4798’ predominantly appears in activa-
tor and inhibitor relations in the training set, whereas it 
is associated with indirect-downregulator and indirect-
upregulator relations in the test set. A similar trend is 
observed with the GPRO entities. For instance, the entity 
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Table 7. List of the most frequent FNs and FPs in participants’ predictions

FNs FPs

CEM Ca2+ 1711 1339
N 1216 1096
BAY 50-4798 1077 921
Sulindac 944 843

GPRO COX-2 1873 2151
AChE 1570 1468
Cyclin D1 822 650

For a more extensive list, please refer to the Supplementary material.

‘cyclin D1’ is implicated in numerous FP and FN instances. 
In the training set, it predominantly participates in inhibitor
relations, whereas in the test set, it is primarily associated with
indirect-downregulator relations.

Most common relation errors
In terms of relation prediction errors, Figure 15 presents the 
distribution of errors across different relation types. Notably, 
the inhibitor, substrate and direct-regulator relations 
exhibit the highest number of FNs. Given that the inhibitor
relation is the most prevalent within the corpus, it is possible 
that RE systems should have incorporated some downsam-
pling mechanism to mitigate this effect. Conversely, relations 
like substrate and direct-regulator demonstrate lower 
recall rates (as shown in the Supplementary material), leading 
to an elevated FN rate. 

The precision–recall balance varies per relation type
We can categorize the relation types into three distinct groups 
based on the balance between systems’ precision and recall. 

The first category consists of relation types where systems 
exhibit a balanced precision and recall, such as activa-
tor and inhibitor. The second category includes rela-
tion types where precision tends to be higher than recall, 
such as substrate, direct-regulator and agonist. The 
third category encompasses relation types where recall is the 
highest, including product-of, indirect-downregulator,
indirect-upregulator and antagonist.

Relation types with a higher recall tend to have a rela-
tively low FN rate, with FNs primarily influenced by the 
character distance between CEM and GPRO mentions. This 
phenomenon is represented in Figure 16, where the character 
distance between CEM and GPRO mentions in each predic-
tion is plotted against the corresponding number of FNs. 
The antagonist relation, with a high recall in system pre-
dictions, shows a stronger correlation between FNs and the 
distance between mentions compared to lower recall relations 
like direct-regulator. 

Overlapping mentions
Interestingly, the number of errors in overlapping mentions 
is remarkably low. An illustrative example of this scenario 
involves a GPRO entity labeled as ‘histidine triad’ and a cor-
responding CEM entity labeled as ‘histidine’. This suggests 
that the presence of overlapping mentions does not appear 
to significantly perplex modern transformer-based systems.

Software analysis
Figure 17 summarizes the programming languages and soft-
ware libraries employed by DrugProt participants. By far, 
Python is the most popular programming language. Tensor-
Flow and Keras are employed by fewer teams than PyTorch 

Figure 15. The number of FP and FN predictions for each relation type.
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Figure 16. Relation between the FNs and the distance between the CEM 
and GPRO entities for ANTAGONIST and DIRECT-REGULATOR relations.

for the deep learning Python libraries. For the NLP libraries, 
SpaCy is more popular than NLTK among participants. It is 
noteworthy the ubiquity of HuggingFace: among the partici-
pants using transformer-based LMs, only four do not report 
using the resources provided—and from those, two do not 
report any detailed software information. 

Discussion
The DrugProt shared task has considerably impacted the 
biomedical NLP community.

First, it has impacted the participant institutions. Shared 
tasks help improve the state of the art and development 

resources. But they are also a powerful mechanism for train-
ing professionals and transferring knowledge from academia 
to industry. Figure 18 shows the time invested by DrugProt 
participants in the track according to their answers to a sur-
vey, and Figure 18C contains the motivation and learning 
experience outcomes of the survey. The figures provide rel-
evant insight, considering that, despite 65% of participants 
reported having previous experience on RE, we have pro-
moted that 35% of the people involved got introduced to the 
field. Besides, only 15% of the teams had previously worked 
on the generation of large-scale NLP systems, and there is 
a need to promote the development of scalable and robust 
pipelines. A part of the bottleneck may come from tasks 
usually focusing on optimizing systems for smaller datasets, 
and these initiatives are the front door for many groups. 
More effort on tasks focused on large-scale processing is
needed. 

One of the motivations for shared tasks is to promote 
open software development and to transfer knowledge from 
academia to industry. Indeed, from the survey answered by 
DrugProt participants, 75% of them would potentially be 
able to provide a software product out of their RE sys-
tem (Figure 18B). As a summary, DrugProt, including the 
large-scale track, has impacted beyond traditional, purely 
academic evaluation scenarios. It has impacted participating 
teams regarding knowledge transfer to industry and knowl-
edge discovery among others.

Second, it has been the BioCreative task with the most 
extensive participation: 107 people from 30 teams from four 
continents, including academia and industry. The developed 
systems offer high quality for most relations. For instance, 

Figure 17. Description of the software used by DrugProt participants: there is no information about team 16.
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Figure 18. Survey results on the (A) time spent, (B), commercial interest and (C) motivation and outcomes of DrugProt participants.

29 systems with an F1-score of >0.9 for antagonist rela-
tions exist. The systems are scalable to millions of documents. 
This was possible thanks to the latest-generation NLP systems 
based on transformers.

Third, it will maintain its impact over time. It has been a 
pioneering task. It was specifically designed to generate sys-
tems that can be readily applied to solve real-world problems. 
The relation-type definition, document selection criteria and 
evaluation scenario were designed following this idea. Besides, 
the Large Scale DrugProt track is the first one of its kind in 
the biomedical NLP community. However, there is still room 
for public evaluation of the systems, not only in terms of 
their predictive performance but also in terms of the time 
required to carry out these predictions. This requires the use 
of comparable evaluation environments, which provide equal 
computational capabilities for the participating models.

The resources made available through DrugProt are 
expected to have a substancial impact on the biomedical NLP 
community. The DrugProt corpus, the DrugProt Silver Stan-
dard and the relation annotations for the entire PubMed 
include entity and relation types purposefully generated for 
a practical application in real-wold scenarios including drug 
discovery or drug repurposing, among others. The devel-
oped systems are powerful tools to complete the existing (or 
new) databases. However, more interaction with the cura-
tors’ communities is needed. For instance, DrugProt focuses 

on chemical–gene/protein interactions. But we could com-
plete this knowledge with other relation types already stud-
ied such as protein–protein (15), chemical–chemical (90), 
gene–disease (18) or transcription factor–gene (91). The anal-
ysis of the generated knowledge graph could also foster 
research on biomaterial compounds. To illustrate its practical 
utility, Figure 19 shows a network generated by extract-
ing the relations between entities related to the biomaterials 
domain, which could help to enrich existing resources in this
field (92) 

The DrugProt initiative presents opportunities for further 
exploration and development. One avenue involves the nor-
malization of CEM and GPRO entities, addressing a task that 
remains incomplete in numerous biomedical NLP applica-
tions. Additionally, there is potential to extend the application 
of the developed systems to diverse data types, including full-
text articles and patents. Furthermore, the incorporation of 
additional relation types not yet covered could also enhance 
the scope and utility of DrugProt’s contributions.

The developed systems are powerful tools to complete the 
existing (or new) databases. However, more interaction with 
the curators’ communities is needed. For instance, DrugProt 
focuses on chemical–gene/protein interactions. But we could 
complete this knowledge with other relation types already 
studied such as protein–protein (15), chemical–chemical (90), 
gene–disease (18) or transcription factor–gene (91).
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Figure 19. Network showing the part of the CEM–GPRO relations related to biomaterials extracted from the PubMed knowledge graph. PART-OF relations 
are shown in green, INHIBITOR in blue and ACTIVATOR in red.

Finally, DrugProt aims at generating persistent resources 
for the biomedical community. Then, the evaluation sce-
nario is maintained intact on CodaLab (https://codalab.lisn.
upsaclay.fr/competitions/8293), and the evaluation library is 
available on GitHub (https://github.com/tonifuc3m/drugprot-
evaluation-library). The DrugProt corpus, Large Scale 
corpus, Silver Standard Knowledge Graph and annota-
tion guidelines are available on Zenodo (https://doi.org/
10.5281/zenodo.4955410). Besides, the participant codes 
can be accessed through the BioCreative webpage (https://
biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/
track-1/). The code to download the PubMed records for the 
large-scale corpus is available on GitHub (https://github.com/
tonifuc3m/pubmed-parser), and the document selection crite-
ria are available on Zenodo (https://doi.org/10.5281/zenodo.
5656991).

Supplementary data
Supplementary material is available at Database Online.
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