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Abstract
The big-data analysis of complex data associated with maize genomes accelerates genetic research and improves agronomic traits. 
As a result, efforts have increased to integrate diverse datasets and extract meaning from these measurements. Machine learning 
models are a powerful tool for gaining knowledge from large and complex datasets. However, these models must be trained on 
high-quality features to succeed. Currently, there are no solutions to host maize multi-omics datasets with end-to-end solutions for 
evaluating and linking features to target gene annotations. Our work presents the Maize Feature Store (MFS), a versatile application 
that combines features built on complex data to facilitate exploration, modeling and analysis. Feature stores allow researchers to 
rapidly deploy machine learning applications by managing and providing access to frequently used features. We populated the MFS for 
the maize reference genome with over 14 000 gene-based features based on published genomic, transcriptomic, epigenomic, variomic 
and proteomics datasets. Using the MFS, we created an accurate pan-genome classification model with an AUC-ROC score of 0.87. The 
MFS is publicly available through the maize genetics and genomics database.

Database URL: https://mfs.maizegdb.org/
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Introduction
The study of cellular, molecular and genetic interactions in 
maize generates huge amounts of data. Due to the high dimen-
sionality and heterogeneity of multi-omics data, integrating 
and analyzing these datasets has proven to be extremely diffi-
cult. Recently there has been an increased interest in analyzing 
large-scale omics data, particularly for predicting genotype-
phenotype relationships. Over the last decade, machine learn-
ing has found numerous applications in plants, resulting in 
a slew of papers and reviews (1–3). There has been partic-
ular interest in maize, making it the most studied crop using 
machine learning (4). This interest can be attributed to the fact 
that it is grown in many parts of the world and has a variety 
of uses, including direct human consumption, animal feed, the 
production of ethanol and other biofuels.

To further advance and facilitate the application of 
machine learning in crop and plant research, robust analytical 
methods and tools are required to manage multi-omics data 
through efficient data management, linkage and integra-
tion strategies. This need is particularly strong for maize 
research, where a vast amount of data exists. Numerous 
storage methods have been developed to manage and ana-
lyze multi-omics data (5), including the Maize Genetics and 
Genomics Database (MaizeGDB) (https://www.maizegdb.
org/), which comprises maize reference sequences, diversity 

data, expression data, phenotypic data, epigenetic and reg-
ulatory data, as well as metabolic pathway data along with 
multiple tools for genome-wide maize data exploration (6); 
Panzea (https://www.panzea.org/), comprising genotypic and 
phenotypic data from several maize lines (7); and Phyto-
zome (https://phytozome-next.jgi.doe.gov/) a centralized hub 
of annotated plant gene families, evolutionary data and 
functional data (8). Other comprehensive databases and 
data repositories such as GenBank (https://www.ncbi.nlm.nih.
gov/genbank/) (9), Gramene (http://www.gramene.org/) (10), 
ePlant (http://bar.utoronto.ca/eplant_maize/) (11), MODEM 
(http://modem.hzau.edu.cn/) (12) and a more recent maize 
multi-omics database ZEAMAP (http://www.zeamap.com/) 
(5) also collect maize omics data. While these databases are 
quite useful, they store data in a structured manner using 
relational databases and require advanced multi-layer data 
structures to optimize data management and analysis. Addi-
tionally, they frequently lack interactive multivariate meth-
ods for exploring and integrating datasets. These databases 
enable users to access data in various file formats, including 
annotation data in GFF format and SNP datasets in VCF for-
mat. Although these datasets are easily accessible via these 
repositories, they do not come in a format suitable for per-
forming diverse multivariate analyses, particularly at the gene 
level. Users who wish to apply modeling to these multi-omics 
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datasets must spend considerable time collecting, cleaning and 
aggregating before using them for model training.

Regardless of the challenges, omics integration studies have 
pervaded literature in recent years (13–15). As a result, the 
growing collection of omics data in maize is gaining attention 
among researchers to carry out systematic integrative analysis 
and storage of the heterogeneous data (16). In response to the 
challenges of handling heterogeneous data, non-traditional 
databases (NoSQL) emerged as an alternative, more flexi-
ble and more scalable data store (17, 18). Therefore, this 
paper presents the Maize Feature Store (MFS), a NoSQL-
based interactive, modular and dynamic user interface for 
systematically integrating and analyzing over 14,407 gene-
based features based on the most recent maize multi-omics 
dataset (version 5 of the B73 reference genome, or B73v5). 
Feature stores are becoming a powerful resource for data 
scientists to have readily available access to high-quality fea-
tures for rapid deployment of machine learning applications, 
but feature stores are not available for most model organ-
ism databases. We aim to demonstrate how MFS provides a 
suite of methods and modeling modules, enabling users to find 
meaningful patterns from the maize omics data.

To demonstrate the utility of the MFS, we discuss the appli-
cation of MFS in pan-genome analysis using the maize genome 
(B73v5) as a multi-omics utility case study. The pan-genome 
represents the entire set of genes within a species (19), consist-
ing of a ‘core’ genome, containing gene models shared between 
all individuals of the species, and the ‘non-core’ genome, made 
up of near-core, dispensable, and private gene models occur-
ring in most, some or a single genome, respectively. Plant 
genomes are highly dynamic, and several challenges remain 
to be overcome before cost-effective and rapid pan-genome 
construction is possible (20). Therefore, we provide mod-
ules aimed at tackling problems associated with pan-genome 
analysis by applying machine learning algorithms and classi-
fying genes as core or non-core in a new genome using only 
multi-omics data associated with the genes.

Materials and methods
Overview of the maize feature store database
We have created an application that uses a MongoDB 
database (NoSQL) named ‘BigFeatureDb’. MongoDB is a 
document-oriented data store that stores data in collections. 
Collections are made up of documents, and each field in a 
document is associated with a value. Complex maize omics 
data has been imported into these embedded data models via 
the Pymongo library. We stored each omics data type in sepa-
rate collections for each feature type (e.g. ‘DNASequenceFea-
tures’). These collections contain documents corresponding to 
the gene model set of the B73v5 reference genome (21). The 
document’s key is used as the MongoDB primary key. Within 
each document, field-value pairs are used to hold pairs of gene 
model feature names and feature values. This database struc-
turing allows a variety of aggregation operations to process 
complex queries.

Maize feature store architecture
The Maize Feature Store has three layers, transform (to ingest 
and process data and create features), store (for storing the 
created features and their metadata), and serve (to make 
available the stored features). The data in the Maize Feature 

Store is stored in the MongoDB database, and the features 
are extracted and pre-processed from varied sources using 
customized Python scripts. The front-end application in the 
Python Flask framework makes the data available to various 
end-users.

Application development
We developed an interactive web-based query system to 
retrieve the desired information from the maize reference 
genome version B73v5 omics data using Flask, HTML5, 
JavaScript and CSS. The server-side scripting uses Python 
code and Pymongo (v3.11.3) drivers. A sophisticated search 
query system enables users to conduct multiple searches, data 
visualization and modeling.

The graphical user interface is designed to help users con-
duct an automatic end-to-end analysis of the maize omics 
data, along with basic exploratory analysis and predictive 
modeling of the datasets. To do this, the interface is divided 
into sections and subsections in the form of various menus 
on the navigation bar. The home page (https://mfs.maizegdb.
org/) illustrates the overall functioning of the tool with three 
major components (‘Features and Analysis’, ‘Models’ and 
‘More’) for getting started with the analyses.

The ‘Features and Analysis’ module (https://mfs.maizegdb.
org/features) is divided into three main sections: All data 
analysis, Downsampled analysis, and User candidate gene 
analysis. Each of these sections is further subdivided into 
Sequence Features, Gene Structure Features, Expression Fea-
tures, Chromatin Features, Count Features, Correlation Fea-
tures and Other Features. These sections have additional 
subsections with specialized functions that operate dynami-
cally on the selected dataset. Users can select their desired 
features and labels in each subsection and carry out a wide 
range of analyses using tables and graphs. Each subsection 
can analyze either the entire dataset or a randomly down-
sampled dataset. The outputs of the selected analysis (tables 
and graphs) are displayed reactively on a separate webpage. 
The user can download all the tables (copy or .csv or .xlsx 
or .pdf) and plots (.png) using specified buttons. Addition-
ally, tables and graphs are interactive, allowing for deeper 
data exploration. It is crucial to note that some subsections, 
such as ‘DNA Sequence’ Features, do not display the whole 
dataset to prevent the complexity of selecting hundreds of 
features and avoid the visualization becoming unwieldy. How-
ever, users can always download the selected subset or the 
complete dataset via the ‘Download Source’ or ‘Download 
All’ choices. All the front-end structures were created using 
Bootstrap (v4.0), jQuery (v3.5.1), and Flask (v1.1.2) Python 
packages. The plots were built by Dashbio v0.7.1 and plotly 
(v5.3.1)/matplotlib (v3.4.2), respectively.

The ‘Predictions’ section consists of machine-learning mod-
els as a web service. As a use-case, we provide two mod-
els: the ‘Advanced’ model (https://mfs.maizegdb.org/model_
advanced) and the ‘Basic’ model (https://mfs.maizegdb.org/
model_basic), for classifying maize core and non-core genes 
(21). Two simple forms are built using HTML and CSS to 
take input from the users on the top 25 features that were 
highly predictive for differentiating between core and non-
core genes. Our application uses a Gradient Boosting Classi-
fier for the ‘Advanced’ model and a Random Forest Classifier 
for the ‘Basic’ model, both built with scikit-learn (v1.0.2) and 
wrapped in Flask.
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The ‘More’ section holds additional information for the 
smooth functioning of the interface, such as links to the 
Data Sources, Tool Sources, Frequently Asked Questions and 
Contact Page.

Data acquisition
The central idea behind generating and extracting a broad 
set of omics data associated with the maize genome is to 
allow researchers to explore these intrinsic and extrinsic gene 
features and conclude their research findings linked to any 
eukaryotic organisms or, more specifically, to maize.

We curated an extensive set of genomics, transcriptomics, 
epigenomic, variomic and proteomics data from three major 
sources: MaizeGDB, peer-reviewed publications and data gen-
erated in other labs (https://mfs.maizegdb.org/data_sources). 
The B73v5 maize gene models, canonical protein sequences 
and coding sequences were collected from the MaizeGDB 
database. Gene structural features were extracted from the 
annotation files (GFF) linked to the B73v5 genome. The gene 
expression (mRNA and protein abundance) datasets across 
multiple tissue types and conditions were collected from 
peer-reviewed publications and from other labs. The epige-
nomic and variomic datasets were gathered from MaizeGDB 
JBrowse (6) and the maize Nested Association Mapping
paper (21).

Sequence feature generation
We used the canonical transcript and protein sequences to 
generate the sequence features for genes with multiple tran-
scripts. The coding sequence data were used for generating 
various numerical representation schemes of DNA sequences. 
Four modules of the rDNAse package (22), basic tools, nucleic 
acid composition, autocorrelation and pseudo nucleotide 
composition (details on the DNA features can be found 
here: https://mfs.maizegdb.org/DNAseq) were used to gen-
erate DNA sequence features. The genomic sequences were 
also used to generate various codon and amino acid usage 
features such as the codon adaptation index, expected effec-
tive number of codon and stacking energy using the SADEG
package (23).

Numerous structural and physicochemical descriptors, 
such as amino acid composition, autocorrelation, compo-
sition/transition/distribution (CTD), conjoint triad, quasi-
sequence order, pseudo amino acid composition and the 
amphiphilic pseudo-amino acid composition (details on the 
protein sequence features can be found here: https://mfs.
maizegdb.org/Proteinseq), were extracted from the pep-
tide/protein sequences using the protr package (24). The pro-
tein sequences were also used to generate predicted protein 
subcellular localization features (nucleus, cytoplasm, extracel-
lular, mitochondria, cell membrane, endoplasmic reticulum, 
plastid, golgi apparatus, lysosome/vacuole, peroxisome) using 
the WolfPsort (25) and Deeploc (26) programs The protein 
structural features such as coils, hot loops, transmembrane 
helices and signal peptides were predicted from the amino acid 
sequences as an input using DisEMBL (27), TMHMM (28) 
and SignalP (29), respectively.

Structure feature generation
The gene annotation (GFF) files linked to the B73v5 maize 
genome were used to extract numerous gene structural fea-
tures such as the gene length, number of isoforms, exon 

length, average exon length, number of exons, chromo-
some associated with each gene, coding sequence length, 
five-prime untranslated regions (UTR) length and three-prime 
UTR length using customized Python script. The Python script 
parses through the GFF file to generate these features.

Distance features such as distance from the chromosome 
center, distance to the nearest knob, the centromere and the 
telomere were also generated for each gene of the B73v5 maize 
genome. The data were downloaded from MaizeGDB.

Expression feature collection
The maize transcriptomics and proteomics data consist of 
expression levels for each gene across multiple tissue types 
and experimental conditions. The RNA expression fea-
tures included data from the MaizeGDB qTeller (30) B73v5 
instance. The MaizeGDB qTeller contains almost 200 unique 
datasets from 12 projects. Each dataset was mapped with a 
consistent pipeline to provide fair comparisons. Any future 
datasets added to the MFS will follow the same pipeline. The 
B73v5 instance of qTeller contains data from eight studies 
from multiple labs (31–38) covering 172 tissues/conditions. 
The ‘Compare RNA & Protein’ tool of qTeller incorporates 
data from a single mRNA and protein study (33) spanning 23 
tissues/conditions. Apart from gene expression, we estimated 
the average mRNA abundance level, protein abundance level, 
maximum mRNA abundance level, maximum protein abun-
dance level, tissue gene abundance breadth and tissue protein 
abundance breadth for each gene across all tissues and condi-
tions. The breadth is defined as the number of tissues where 
the gene or protein showed expression.

Chromatin feature generation
Chromatin features comprised of chromatin states, three his-
tone modifications (H3K4me3, H3K27me3, H3K27ac), open 
chromatin as quantified by ATAC-Seq and DNA methylation 
(quantified separately in CG, CHG and CHH contexts) were 
obtained from the ChromHMM software and Dai, Xiuru 
et al. (1). The chromatin states were generated from ChIP-Seq 
data (including nine types of histone modifications, H2AZ, 
H3, H3K4me1, H3K4me3, H3K9ac, H3K27ac, H3K27me3, 
H3K36me3, H3K56ac) in two tissues, ear and leaf (39). 
Histone modifications are often found in recurring combina-
tions at promoters, enhancers and repressed regions. These 
combinations are called ‘chromatin states’ and can annotate 
regulatory regions in genomes. We have included multiple 
chromatin states features from ChIP-Seq data using the tool 
ChromHMM (A multivariate HMM for chromatin combina-
torics) (40).

Count feature generation
We generated the ‘Count’ features by finding and count-
ing annotations from multiple genome interval files whose 
genomic coordinates overlapped with the maize gene sites 
using the bedtools suite (41). The genome annotation files 
included the MaizeGDB B73v5 JBrowse annotations (muta-
tional insertions, transcription factor binding sites, transcrip-
tion start sites, enhancers, transposable elements, miRNAs) 
(39, 42–47) and G-quadruplexes. The G-quadruplex annota-
tion files were generated using in-house Python scripts from 
the B73v5 maize genome sequence. Counts were computed for 
three genomic regions: the first region included the gene body, 
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the second included a 1KB region upstream and downstream 
of the gene start and end sites and the third covered a much 
larger region, comprising 5 KB upstream and downstream of 
the gene start and end site.

Correlation feature collection
The correlation features include 12 co-expression modules 
identified through weighted gene co-expression network anal-
ysis. The data comprise 79 tissues, six-organ developmental 
gene atlas coupled with five abiotic/biotic stress transcrip-
tome datasets (48). These topology features were available for 
B73 AGPv4 gene models; therefore, B73 AGPv4 gene models 
were converted to B73v5 using a conversion list published on 
MaizeGDB.

Varionomic feature generation
Varionomic features included the count of single nucleotide 
polymorphisms (SNPs) per gene model and the effects of SNPs 
on the genes. The count of SNPs per gene model was calcu-
lated by finding overlapping regions between the SNP data 
VCF file from (21) and maize gene coordinates using Bedtools, 
and SnpEff (49) was used to annotate and predict the impact 
of variations on genes. This tool takes pre-defined variations 
listed in a VCF file containing the nucleotide change and its 
location and predicts if the variants are detrimental.

Other feature generation
The ‘Other’ feature section includes evolutionary gene age 
(described below) and the total number of presence/absence 
of associated Pfam-domains per gene model (21, 50). The 
direction and magnitude of natural selection were inferred 
from the ratio of nonsynonymous substitutions (Kn)/syn-
onymous substitutions (Ks) between Sorghum and maize 
B73v5 orthologous genes and from the ratio of nonsyn-
onymous substitutions (Kn)/synonymous substitutions (Ks) 
between maize Tzi8, a tropical maize line (21), and maize 
B73v5 orthologous genes. Ks and Kn values were derived 
between syntenic ortholog coding sequences of B73v5 and 
Sorghum bicolor v3 (https://phytozome-next.jgi.doe.gov/info/
Sbicolor_v3_1_1) using the tool CoGe SynMap (51) (https://
genomevolution.org/coge/SynMap.pl) with the parameters 
Relative Gene Order; -D 20; -A 5; Quota Align Merge; Syn-
tenic Depth B73:Sorghum 2:1; and CodeML Kn/Ks. Ks and 
Kn values between B73v5 and the maize tropical cultivar Tzi8 
were derived using similar parameters except the Syntenic 
Depth was set to 1:1.

The evolutionary gene age was calculated by searching 
for homologs within increasingly broad clades using the 
phylostratr pipeline (52). The deepest clade that contains a 
homolog of the protein(s) encoded by a gene is that gene’s 
age as described by Arendsee, Zebulun et al. (52). The 
maize gene age is classified into 21 categories based on the 
presence/absence of the homologs of maize genes in 20 rep-
resentative eukaryotic species (including cellular organisms, 
Andropogoneae, commelinids, Embryophyta, Eukaryota, Lil-
iopsida, Magnoliopsida, Mesangiospermae, PACMAD clade, 
Panicoideae, Petrosaviidae, Poaceae, Poales, Spermatophyta, 
Streptophyta, Streptophytina, Tracheophyta, Tripsacinae, and 
Viridiplantae).

Label generation
In addition to the different genomics, proteomics and 
transcriptomics features, the Maize Feature Store also 
includes example biological annotations. They can be used 
as class labels for users looking to classify their genes of 
interest to any of the biological annotations or identify rela-
tionships between these gene annotations and a variety of 
features offered through the MFS. These gene annotations are 
not only meant to act as targets, but are also intended to 
function as features when appropriate. For example, we can 
use whole-genome duplication (WGD)/tandem gene annota-
tions as features when trying to solve core/non-core gene 
prediction problems and vice versa. Currently, MFS contains 
three sample labels: ‘Classical’ (classical/other) genes, ‘Pan-
genome’ (core/near-core/dispensable/private) genes, ‘Gene 
Origin’ (WGD/tandem/both) genes, and a ‘No Label’ option. 
Classical genes are the most well-studied genes in maize, most 
of which have a visible mutant phenotype (for example, ligule-
less2) as described by Schnable, C, James et al. (53). We 
downloaded 430 maize classical genes from MaizeGDB (Clas-
sical Genes). The core/near-core/dispensable/private genes and 
WGD/tandem/both genes were collected from maize pan-
genome generated as part of the Nested Association Map-
ping (NAM) genome sequencing project (21). The ‘No Label’ 
option lets users view the relationship between the genes inde-
pendently of any annotations. This selection is provided to 
enable users to view the properties of all genes without label-
ing them into different gene categories or annotations. Using 
this feature, users can examine the features of multiple genes 
and can choose to annotate them based on common patterns 
identified between different genes. As it involves the inspection 
of all the genes, they work only for the “Submit for analysis” 
button.

Data visualization
The MFS user interface is pre-configured with plotly, mat-
plotlib, and Dashbio allowing innovative visualizations such 
as data distributions, connections between features, and 
aggregate statistics (minimum, maximum, average, unique 
categories, outliers, missing values, etc.). This enables 
researchers to gain rapid insight into the features and make 
more informed decisions about using specific features. The 
interface also provides detailed instructions on the usage and 
interpretation of each plot. Users are given options to con-
duct each exploratory analysis using the entire omics dataset 
or the downsampled data using the ‘Submit analysis’ and 
‘Downsampled analysis’ buttons.

Downsampled analysis
The ratio of label categories is frequently uneven, resulting in 
a bias favoring the majority class. For example, seventy-two 
percent of our genes are marked as core in the maize reference 
genome version B73v5, and twenty-eight percent are anno-
tated as non-core (near-core, dispensable and private genes). 
Therefore, we offer the random down-sampling method to 
address the issue of unbalanced data during exploratory anal-
ysis and provide users with the option of ‘Downsampled anal-
ysis’. It is important to note that the size of the downsampled 
data is different for each label (Classical/Pan-genome/Gene-
Origin) selection as the size of the minority class is different 
in each label.
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User candidate gene analysis
The user candidate gene analysis section allows users to do 
a comparative study on their genes of interest. Users can 
enter a single gene of interest or a group of candidate genes 
linked to specific biological pathways or functions and com-
pare them with other down sampled sets of maize genes. Two 
types of analyses are possible for the user-defined candidate 
genes: a) single candidate gene analysis and b) analysis of 
multiple candidate genes. For single gene analysis, users can 
enter a single gene of interest and visualize the output for the 
selected features either in tabular format or graphical format 
with a marginal plot showing the frequency distribution of 
the selected gene features for all maize genes along with high-
lighting the candidate gene (Supplementary Figure S1A). For 
analysis of multiple candidate genes, users can enter a list of 
genes and compare their gene list for the selected feature with 
the other downsampled maize genes in various univariate or 
multivariate plots. When using multiple candidate genes, it 
is recommended that a larger gene list be entered (fifty or 
more) so that a more reliable comparison of the candidate 
genes and the downsampled other maize genes can be made. 
The down-sampling is random based on the number of candi-
date genes, therefore a larger candidate gene list requires more 
down sampled genes, resulting in a better representation of the 
population.

To demonstrate the potential use case of the user candidate 
gene analysis, we gathered a set of fifty stress genes differ-
entially expressed between the control and salt stress samples 
(54) and used them to identify unique characteristics common 
among salt stress genes (Supplementary Figure S1B). Using 
our univariate analysis, we found that the maize B73v5 salt 
stress genes differed significantly from other downsampled 
maize genes regarding the gene structural features of isoform 
count, coding sequence length, three-prime UTR length, and 
five-prime UTR length. These structural features showed a sig-
nificantly higher range among the candidate genes. Previous 
work on stress genes has also discovered that 3′UTR-based 
mRNA stability controls are present in stressed cells (55), 
thereby further supporting our findings from the salt stress 
genes.

Exploratory analysis
The exploratory analysis module in the Maize Feature Store 
assists users in visualizing all accessible features and labels 
in tabular and graphical formats after initial preprocessing, 
cleaning, and normalization steps. Omics datasets come in 
diverse scales and follow their own statistical distributions 
as they are collected from disparate sources; therefore, data 
standardization becomes crucial for omics datasets. The MFS 
application allows for the normalization of omics numerical 
features by centering the features with their mean and the 
standard deviation between 0 and 1 using the StandardScalar 
function of Sklearn.

Apart from providing fundamental functionality, high-end 
modules in MFS calculate and perform various univariate, 
bivariate, or multivariate analyses such as Histograms, Count 
and Distribution plots, Pair plots, Box plots, Violin plots, Joint 
plots, Scatter plots, Correlation plots, Categorical Bar plots, 
Heatmaps, Clustering plots, and Dimension reductions (PCA) 
(see Supplementary Methods). However, the ‘Gene Expres-
sion’ dataset currently provides a preview of the results by 
limiting the display of Histograms, Count and Distribution 

plots, Pair plots, Box plots, Violin plots, Correlation plots, 
and Heatmaps to five tissues of the selected lab. Since each 
lab includes multiple tissues, the limit of visualizing five tis-
sues is intended for better analysis and visualization of plots. 
Users can modify the script to view more than five tissues from 
a lab. Most of these plots have options to download, zoom-
out/zoom in, reset axes, autoscale, toggle spike lines, show the 
closest data on hover, compare data on hover, box select, pan, 
and lasso. Users can also select specific legends to view data 
only for the selected legends. The Histograms, Count and Dis-
tribution plots, and the Categorical Bar plots also come with a 
two-sided p-value analysis displayed at the top of the selected 
feature chart to determine whether there is enough statistical 
evidence in favor of a hypothesis (there is a difference in the 
selected feature values or frequencies across the different cat-
egories of the target variable). For comparing the effect of the 
selected continuous feature on the classical/other genes tar-
get variable (binary), we carry out a two-sample test using 
the scipy.stats library in Python. For comparing the effect of 
the selected continuous feature across multiple categories of 
the target variable such as core/near-core/dispensable/private 
genes or WGD/tandem/both genes, we carried out a one-way 
ANOVA test using the Python stats library, and lastly, for com-
paring the effect of the selected categorical feature across two 
or more categories of the target variable, we carried out the 
Chi-square test using the scipy.stats library in Python.

Details on the usage and interpretation of all the plots 
and tables are also available on the MFS website (https://mfs.
maizegdb.org/Structure) and Supplementary Methods. While 
MFS is intended to facilitate plot generation using a graph-
ical user interface, by hiding sophisticated plotting routines 
behind MFS modules, users can download the appropriate 
module Python script for direct replication and transforma-
tion of the visualizations.

Data clustering
The MFS uses advanced functionalities to analyze unlabeled 
omics data rather than labeled data to overcome the lack 
of manual annotations. The module can efficiently compute 
several unsupervised clustering algorithms on downsampled 
omics data and provides interactive visualization of the results 
using Dendrograms, Heatmaps, Hierarchical Scatter plots, 
Hierarchical Heatmaps, and PCA plots (2D, 3D, biplot) (see 
Supplementary Methods). Different user options are avail-
able for some of these modules to dynamically show different 
results. For example, in the Hierarchical Scatter plots, the 
‘Choose Clusters’ option is available where the users can man-
ually enter the number of clusters to visualize in the Pair plot. 
However, it is recommended that users enter the number of 
clusters as per the output generated by the Dendrogram plot. 
To save time and complexity, we limited the Heatmap plot to 
only display the relationship between the first hundred down-
sampled genes and the selected attributes; however, users with 
sufficient resources are free to utilize the function and cus-
tomize it to include as many genes as necessary for their 
specific analysis.

Results
Maize feature store workflow
Maize omics data are generally large, complex, and con-
tain a variety of structures. The ability to store and retrieve 
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data effectively is critical in maize research. Historically, huge 
datasets have been kept as flat files on disk or relational 
databases. These platforms are difficult to develop, main-
tain, and adapt to big-data applications because they adhere 
to inflexible table structures and frequently lack scalability, 
such as data aggregation. Therefore, we proposed to design 
our application to carry out complex operations, including 1) 
Flexible, to handle a wide variety of data types. This enables 
researchers to rapidly evolve data models and conduct cus-
tomized analyses. 2) Scalable, permitting researchers to easily 
explore large and complex datasets without waiting long peri-
ods for simple queries. 3) Operationally mature, including 
end-to-end encryption, fine-grained data access control, and 
operational tooling. These operations can facilitate the man-
agement of multi-omics data and the accurate alignment of 
genes across multiple datasets, thereby increasing the feasibil-
ity of multi-omics integrative analysis.

Numerous biological prediction problems (56) are based 
on standard feature sets such as gene length, exon num-
ber, and gene expression. These conventional feature sets are 
repeatedly utilized to tackle many different biological prob-
lems and to obtain these features from raw data requires users 
to know bioinformatics, such as annotating gene models from 
a genomic fasta file, mapping RNA-Seq reads to genomes or 
extracting counts of exons per gene model. These processes 
become tedious and repetitive if we use the same features 
to solve further biological problems A feature store allows 
researchers to overcome this obstacle and improve the usabil-
ity of the omics in the genotype-to-phenotype context. We 
developed the Maize Feature Store tool to simplify the man-
agement, access, and analysis of omics datasets for a wider 
range of users.

Application of MFS on pan-genome classification
We illustrate the capability of the Maize Feature Store in 
applying and analyzing multi-omics data for classifying genes 
as core or non-core and identifying top omics features that 
are most helpful in predicting their classification within a 
pan-genome. As reported in Figure 1, several modules were 
developed to follow a precise exploratory analysis workflow 
that goes from the data selection to the downstream data 
analysis and ultimately to modeling. For our case study, we 
developed two models: one that utilized all omics features 
(a total of 14 407 features) (https://mfs.maizegdb.org/feature_
details) and another that utilized a subset of omics features 
(a total of 10 271 features) consisting of only the gene struc-
ture, gene sequence, and protein sequence data (https://mfs.
maizegdb.org/feature_details). The model development life-
cycle involved several stages, such as feature engineering, 
dealing with imbalanced data, feature selection, model build-
ing, hyperparameter tuning, and finally selecting the most 
optimal model (see Supplemental Methods).

An example of the ‘Data Table’ module is shown in Table 1. 
In the ‘Data Table’ module, it is possible to view all the genes 
and the selected features. Users can sort the table columns and 
use the search bar to look up specific gene IDs. We used the 
MFS data exploration and visualization modules to perform 
several univariate, bivariate, and multivariate analyses of the 
core and non-core gene structural features (Supplementary 
Figures S2-S6, see Supplemental Methods). An initial analysis 
of the data provided a quick visual summary of the poten-
tial association between the selected features of interest and 

the various categories of the ‘Pan-genome’ label (Figure 2 and 
Supplementary Figures S2-S6). By simultaneously exploring 
gene structure features, we can observe that several features 
are significantly correlated in both core and non-core genes. 
Therefore, the plots can initially demonstrate how the differ-
ent genomic features can contribute to our understanding of 
core or non-core genes and highlight the potential for gene 
structural features in pan-genome classification.

Unified features excel over individual subsets in 
maize gene classification: core vs. non-core 
categories
The “Modeling“module of MFS offers an “Advanced Model” 
form and a”Basic Model” form which allows users to make 
predictions for their genes based on certain inputs. We trained 
the “Advanced” model using the top 25 features from a com-
prehensive set of omics features generated using a Hybrid Fea-
ture Selection method and a base Gradient Boosting Classifier 
with five-fold cross-validation (Supplementary Tables S1-S2 
and Figure 3A). We built a simplified “Basic” model by train-
ing on the top 25 features generated using a similar approach 
from only the gene structural features and sequence features 
(Supplementary Tables S3-S4 and Figure 3B). To evaluate 
the specific contributions of each feature type to the over-
all accuracy of core and non-core gene prediction, we per-
formed individual predictions using the other distinct subsets 
of features (Expression Features, Chromatin Features, Count 
Features, Correlation Features, and Other). This involved 
constructing separate machine-learning models for each fea-
ture subset (Supplementary Figure S11-S16). We tested the 
performance of six machine-learning algorithms for the clas-
sification of “Pan-genome” genes on both “Advanced” and 
“Basic” models, namely: (1. Logistic Regression, 2. Random 
Forest Classifier, 3. Gradient Boosting Classifier, 4. Extra Trees 
Classifier, 5. KNeighborsClassifier, and 6. SVM Classifier) 
and two distinct optimization approaches (1. Random and 2. 
Grid Search). In general, all five approaches performed well, 
but Gradient Boosting Classifier performed significantly bet-
ter in the “Advanced” model with the area under the Receiver 
Operating Characteristic Curve (AUC-ROC) = 0.85, Average 
Precision-Recall (PR) = 0.96, and F1 = 0.92 (Figure 3C) and 
the Random Forest Classifier performed significantly better 
in the “Basic” model yielding an AUC-ROC = 0.80, Aver-
age PR = 0.92 and F1 = 0.89 (Figure 3D). We compared the 
results to random classification to gain a proper perspective 
on the model performances. Based on random classification, 
the AUC-ROC would be 0.5. When AUC = 0.5, the classi-
fier cannot distinguish between positive (core) and negative 
(non-core) class points, as the classifier is predicting a random 
class or a constant class for all the data points. An increase 
in AUC-ROC and F1 can be seen in the “Advanced” model, 
especially compared to the “Basic” model. Therefore, our per-
formance increased significantly when we used both intrinsic 
and extrinsic features, as demonstrated by the “Advanced” 
model.

Additionally, both of our models: ‘Basic’ and ‘Advanced’, 
outperformed a previous model in terms of accuracy recently 
published by Yocca, E, Alan et al. (57), which predicted core 
genes of Oryza sativa and Brachypodium distachyon using 
only intrinsic features such as gene sequence features, evolu-
tionary features, and gene structural features. They achieved 
an AUC-ROC of approximately 0.77 and an accuracy of 
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Figure 1. Module description: The MFS consists of three main modules: Features, Downstream Analysis, and Modeling. We assembled the omics 
features associated with each gene model in Zea mays (B73v5) based on various sources as indicated by the ‘Data sets’ arrows of the figure. Many 
preliminary and advanced exploratory analyses can be performed on the generated features as indicated by the ‘Exploratory analysis’ module of the 
figure. Systematic evaluation of machine learning (ML) approaches is used in the Modeling section to solve complex biological problems, such as 
pan-genome prediction. The Graphical Overview was created using BioRender.com.

Table 1. Dynamic visualization of the selected gene structure datasets (exon number, five-prime UTR length, gene length, three-prime UTR length and 
the ‘Pan-genome’ categories) using the MFS’s ‘Data Table’ option. Only ten rows are displayed per page

ID ExonNum
UTR5length
(base pairs)

Genelength
(base pairs)

UTR3length
(base pairs) PanGenome_label

Zm00001eb000010 9 105 5588 1668 Near-Core Gene
Zm00001eb000020 9 849 5549 313 Core Gene
Zm00001eb000050 7 645 5829 0 Dispensable Gene
Zm00001eb000060 2 299 1023 364 Dispensable Gene
Zm00001eb000070 6 0 8641 0 Dispensable Gene
Zm00001eb000080 9 447 3132 730 Near-Core Gene
Zm00001eb000100 6 82 3105 641 Near-Core Gene
Zm00001eb000110 2 15 821 43 Dispensable Gene
Zm00001eb000120 1 0 628 268 Near-Core Gene

approximately 0.71 when trained and tested with the Oryza 
sativa balanced datasets and an AUC-ROC of approximately 
0.86 and an accuracy of approximately 0.80 when trained and 
tested with the Brachypodium distachyon balanced datasets 
using a Random Forest method for ML, whereas our ‘Basic’ 
model (Random Forest Classifier) achieved an AUC-ROC of 
approximately 0.80 and an accuracy of approximately 0.84 in 
the testing set, and our ‘Advanced’ model (Gradient Boosting 
Classifier) achieved an even higher accuracy of approximately 
0.89 and AUC-ROC of approximately 0.85. In this way, 
our models not only classify genes as core or non-core but 
also challenge the efficacy of current pipelines by compar-
ing model output with pipeline output. Analyses of complex 
genomes by pan-genome pipelines often result in the incor-
rect annotation of genes as core or non-core. Our model 
can provide extra validation to the pipeline output and iden-
tify mis-annotations that may occur in the current pipelines, 
which are both time-consuming and computationally
expensive.

Investigating the features that have strong differentiation 
powers in both the ‘Basic’ and ‘Advanced’ models.

The best performing model (Gradient Boosting Classi-
fier in the ‘Advanced’ model and Random Forest Classifier 
in the ‘Basic’ model) was used to determine which pre-
dictor variables are most significant for prediction perfor-
mance. In this way, we can gain insights into the biology 
of core and non-core genes. The 25 most important vari-
ables (Figures 3A and 3B) for training the “Advanced‘’ model 
and the ‘Basic’ model were generated using a Hybrid Feature 
Selection method and a base Gradient Boosting Classifier as 
described in the materials and methods section. A Gradient 
Boosting Classifier has a built-in variable importance assess-
ment. The Kn/Ks ratio of both sorghum vs. B73 and Tzi8 vs. 
B73, a measure of evolutionary pressures on protein-coding 
regions, was among the top five most significant features in 
the “Advanced” model. There have been previous pan-genome 
studies that compared synonymous (Ks) and nonsynonymous 
substitution (Kn) rates (58). These studies have indicated that 
dispensable genes undergo more non-synonymous substitu-
tions, as well as increasing Kn/Ks ratios, implying greater 
positive selection on dispensable genes (59–61). While per-
forming exploratory analysis with the genes, we also observed 
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Figure 2. Example Maize Feature Store outputs. The MFS provides users with options to carry out several univariate, bivariate, and multivariate analyses 
for both the total and downsampled omics data. Univariate analysis example: (A) Total Histogram; (B) Downsampled Histogram; Bivariate analysis 
example: (C) Total Scatter plot; (D) Downsampled Scatter plot; Multivariate analysis example: (E) Total Correlation plot; (F) Downsampled Correlation plot. 
These plots were generated from the selected Gene Structures such as Gene length, Exon number, three-prime UTR length, five-prime UTR length, and 
the selected label (‘Pan-genome’: core/near-core/dispensable/private). The plot’s colors and legends indicate the multiple ‘Pan-genome’ categories. In 
addition to the graph, to increase the interpretability of the data, we have also included p-values, mean and standard deviations of the selected datasets. 
For details on the interpretation of the plots, see (https://mfs.maizegdb.org/Structure).
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Figure 3. Maize Feature Store example Basic and Advanced models. (A) In our Advanced model, both intrinsic and extrinsic features contributed 
substantially to the core/non-core gene predictions in maize B73v5. The 25 omics features were ranked based on how useful the model found each 
feature in predicting the target (core/non-core genes). (B) The Basic model feature importance plot displays only the structural and sequence features 
most predictive of identifying the core and non-core genes in B73v5. Higher scores indicate that a specific feature has a larger impact on the model 
used to predict a specific variable (core/non-core). (C, D) The prediction performance of both the ‘Advanced’ model and the ‘Basic’ model was evaluated 
across all classifiers on the test set using AUC-ROC (left) and the area under the Precision-Recall Curve AUC-PR (right) metrics. For detailed model 
evaluation and performance analysis, see the Supplementary Figure S17-S18.

a difference in the Kn/Ks ratio of Tzi8 vs. B73 among the 
‘Pan-genome’ genes with a mean value of 13.90 in the dispens-
able genes and 4.58 and 4.70 in the near core and core genes, 
respectively, aligning with results found in the previous studies 
of greater positive selection on dispensable genes. The two-
sided p-value analysis also indicated a significant difference 
in the Kn/Ks ratio observed among the ‘Pan-genome’ genes. 
Other important predictors in our ‘Advanced’ model were the 
difference in the ratio of the WGD regions among the core 
or non-core genes, presence, and absence of Pfam domains 
(protein families, domains, and functional sites extracted from 
the Pfam database) for coding genes in the core genome set 
and those in the dispensable genome, Transcription Factor 
Ethylene Responsive Element Binding Factor domain EREB 
(stress-responsive transcription factors) and (TE) transposable 
elements.

Gene duplications play a major role in the evolution of 
novel traits ineukaryotes (62, 63). The WGD regions are 

found to contain a higher ratio of core and near-core genes, 
whereas non-WGD regions (tandem regions) contain a higher 
ratio of dispensable and private genes (64, 65). Addition-
ally, the exploratory analysis also indicated that in our omics 
dataset, the non-core genes had a higher tandem repeats ratio 
than the core genes (Supplementary Figure S7). An enrich-
ment of TEs in the vicinity of dispensable genes was reported 
in B. distachyon (59) and B. oleracea (66). Our model, as 
well as our exploratory analysis (https://mfs.maizegdb.org/
TE), complements the findings of previous studies on trans-
posable elements and Pfam domains (67), as the maize B73 
dispensable genes were also found to be enriched with trans-
posable elements around the 1Kb and 5Kb regions upstream 
and downstream of the gene start site and end site respec-
tively, and the total Pfam domains were also abundant among 
the maize B73 core genes compared to the dispensable genes. 
As the EREB transcription factors are involved in plant hor-
mone responses under stress conditions (68), they are more 
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likely to be enriched among dispensable genes than the core 
genes, and our study confirms this (https://mfs.maizegdb.org/
TFbindingSite).

The top features in our ‘Basic’ model having the most 
influence in the classification of core or non-core genes are 
the five-prime UTR length, three-prime UTR length, iso-
forms count, and sequence features such as Composition 
Transition Distribution (CTDD), pseudo dinucleotide com-
position (PseDNC) and many more. Most of these features 
displayed significant differences between the maize B73 core 
and non-core genes (https://mfs.maizegdb.org/Structure). Ear-
lier studies have also stated that dispensable genes tend 
to display common features similar to young genes: short 
gene length, weak homology, low expression, rapid evo-
lution, and turnover (69), thereby further supporting our 
findings on the topological properties of core and non-core
genes.

Discussion
The growing number of omics datasets from diverse sources 
have highlighted the importance of evaluating specific mod-
els and methods for collecting, managing, and analyzing 
multi-omics data to better explore the interplay between the 
multiple cellular, molecular, and phenotypic layers. While sev-
eral multi-layer data structures are available, there is still a 
need for end-to-end solutions for storing, exploring, and mod-
eling data. To solve this need, we proposed using MFS as 
a suitable structure to manage commonly used maize omics 
features. MFS will benefit bioinformaticians, data scientists, 
and experimental researchers interested in solving complex 
biological problems Our tool enables researchers to share 
and discover features, create more effective machine-learning 
pipelines, and perform exploratory analyses. It provides users 
without domain knowledge or modeling experience the abil-
ity to identify the most significant factors affecting the target 
problem. For example, during the exploratory analysis of 
‘Pan-genome’ genes (Figure 2), we observed that the exon 
number varied across the pan-genome categories and thus 
might be a strong predictor of core or non-core genes.

An example of a current application of these models 
involves classifying genes in a new species closely related to 
maize as core or non-core without constructing an expensive 
pan-genome. Our models outperform random assignment for 
most downstream applications with around 90% accuracy. 
Our model would also be ideal for newly sequenced or poorly 
annotated genomes. Where other tools like BLAST could also 
infer annotation, it does not provide underlying insights for 
the assignments beyond sequence homology.

Each year, numerous papers and research articles are pub-
lished on maize, utilizing omics data. However, although data 
repositories exist, there is a need to extend model orgaism 
databases like MaizeGDB to provide end-to-end data anal-
ysis. MFS, in this context, provides a central hub of maize 
omics features with flexible and expandable functionality that 
enables maize researchers to configure the tool for specific 
analyses. Additionally, MFS’s modeling module utilizes a com-
prehensive set of omics features to conduct a core/non-core 
gene classification. Even though several prediction or classi-
fication problems have been addressed using a wide range of 
omics features in mice (70), D. melanogaster (71, 72), and 
C. elegans (73), no work on plants, more specifically maize, 

has been reported. We were able to build a classification 
model utilizing the comprehensive set of features (‘Advanced’ 
model) and perform a comparative study by building another 
model utilizing just sequence and structural features known 
as the ‘Basic’ model. Although the ‘Basic’ model was more 
generalized, the ‘Advanced’ model performed significantly bet-
ter (Figure 3C), thus showing that an elaborate assembly of 
intrinsic and extrinsic factors from a wide range of sources 
covering multiple aspects of a gene greatly outperforms the 
approach based solely on sequence or structural features. 
We further emphasized the necessity of using both intrinsic 
and extrinsic features by comparing our models (both ‘Basic’ 
and ‘Advanced’) with already existing models by Yocca, E, 
Alan et al. (57), which predicted core and non-core genes 
of Oryza sativa and Brachypodium distachyon, respectively. 
Our ‘Advanced’ model performed significantly better with an 
accuracy of almost 25% higher than their same species Oryza 
sativa model (trained and tested on the Oryza sativa balanced 
datasets) and almost 11% higher than their Brachypodium 
distachyon model (trained and tested on the Brachypodium 
distachyon balanced datasets).

In this work, we aimed at the needs of both experimen-
tal and computational researchers. We addressed the need 
for resources that bridge the gap between the growing num-
ber of omics datasets and their potential as training data for 
modeling and machine learning. We developed a framework 
that hosts over 14 000 gene-based machine learning features 
built on multi-omics data to facilitate the exploration and 
modeling of classification problems The tool’s modularity will 
allow computational researchers to add additional functional-
ity, fine-tune existing functionalities, and reproduce the entire 
application for other species of interest.

Supplementary material
Supplementary material is available at Database online.

Data availability
Project name: Maize Feature Store (MFS); Project home 
page: MFS is freely available on GitHub at https://github.
com/shatabdi123/MFS_Application Web version of MFS is 
available at https://mfs.maizegdb.org/. The dataset for MFS 
can also be accessed on Kaggle: https://kaggle.com/datasets/
332177dbd2271966f2291640acf6f7057bde915d939b3bf67
545a5f24a0e3fe3. Programming language: Python, R, 
JavaScript, HTML, CSS; Other requirements: Flask 1.1.2 or 
higher. The application is platform independent.

Abbreviations
MFS (Maize Feature Store), ML (Machine Learning), WGD 
(Whole Genome Duplication), SNP (Single Nucleotide Poly-
morphisms), VCF (Variant Call Format), GFF (General Fea-
ture Format), AUC-ROC (Area under the Receiver Operating 
Characteristic Curve), GUI (Graphical User Interface), AUC- 
PR (Area under the Precision-Recall Curve)

Funding
This research was supported by the US. Department of 
Agriculture, Agricultural Research Service, Project Number 

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad078/7374921 by guest on 19 M

ay 2024

https://mfs.maizegdb.org/TFbindingSite
https://mfs.maizegdb.org/TFbindingSite
https://mfs.maizegdb.org/Structure
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baad078#supplementary-data
https://github.com/shatabdi123/MFS_Application
https://github.com/shatabdi123/MFS_Application
https://mfs.maizegdb.org/
https://kaggle.com/datasets/332177dbd2271966f2291640acf6f7057bde915d939b3bf67545a5f24a0e3fe3
https://kaggle.com/datasets/332177dbd2271966f2291640acf6f7057bde915d939b3bf67545a5f24a0e3fe3
https://kaggle.com/datasets/332177dbd2271966f2291640acf6f7057bde915d939b3bf67545a5f24a0e3fe3


Database, Vol. 00, Article ID baad078 11

[5030–21000-068-00-D] through the Corn Insects and Crop 
Genetics Research Unit in Ames, Iowa. This material is based 
upon work supported by the Department of Agriculture, 
Agricultural Research Service under Agreement No. 58–5030-
0-036 [Iowa State Award: 022172–00001 to J.W.W.]. Men-
tion of trade names or commercial products in this publication 
is solely for the purpose of providing specific information and 
does not imply recommendation or endorsement by the U.S. 
Department of Agriculture. USDA is an equal opportunity 
provider and Employer.

Conflict of interest
None declared.

Acknowledgements
We thank the research groups of the Iowa State University and 
USDA-ARS, Corn Insects and Crop Genetics Research Unit 
and Dr Rita Hayford for their constructive feedback, which 
has contributed to the improvement of our platform.

References
1. Dai,X., Xu,Z., Liang,Z. et al. (2020) Non-homology-based pre-

diction of gene functions in maize (Zea mays ssp. mays). Plant 
Genom., 13, e20015.

2. Lloyd,J.P., Seddon,A.E., Moghe,G.D. et al. (2015) Characteris-
tics of Plant Essential Genes Allow for within- and between-
Species Prediction of Lethal Mutant Phenotypes. Plant Cell., 27, 
2133–2147.

3. Singh,A., Ganapathysubramanian,B., Singh,A.K. et al. (2016) 
Machine Learning for High-Throughput Stress Phenotyping 
in Plants. Trends Plant Sci., 21, 110–124.

4. Benos,L., Tagarakis,A.C., Dolias,G. et al. (2021) Machine Learn-
ing in Agriculture: A Comprehensive Updated Review. Sensors. 
(Basel), 21, 3758.

5. Gui,S., Yang,L., Li,J. et al. (2020) ZEAMAP, a Comprehensive 
Database Adapted to the Maize Multi-Omics Era. iScience, 23, 
101241.

6. Woodhouse,M.R., Cannon,E.K., Portwood,J.L., 2nd et al. (2021) 
A pan-genomic approach to genome databases using maize as a 
model system. BMC Plant Biol., 21, 385.

7. Zhao,W., Canaran,P., Jurkuta,R. et al. (2006) Panzea: a database 
and resource for molecular and functional diversity in the maize 
genome. Nucleic Acids Res., 34, D752–757.

8. Goodstein,D.M., Shu,S., Howson,R. et al. (2012) Phytozome: a 
comparative platform for green plant genomics. Nucleic Acids 
Res., 40, D1178–1186.

9. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J. et al. (2007) Gen-
Bank. Nucleic Acids Res., 35, D21–25.

10. Tello-Ruiz,M.K., Naithani,S., Gupta,P. et al. (2021) Gramene 
2021: harnessing the power of comparative genomics and path-
ways for plant research. Nucleic Acids Res., 49, D1452–D1463.

11. Waese-Perlman,B., Pasha,A., Ho,C. et al. (2021) ePlant in 2021: 
New Species, Viewers, Data Sets, and Widgets. bioRxiv., 
2021–2024.

12. Liu,H., Wang,F., Xiao,Y. et al. (2016) MODEM: multi-omics data 
envelopment and mining in maize. Database. (Oxford), 2016, 
baw117.

13. Fukushima,A., Kusano,M., Redestig,H. et al. (2009) Integrated 
omics approaches in plant systems biology. Curr Opin. Chem. 
Biol., 13, 532–538.

14. Zogli,P., Pingault,L., Grover,S. et al. (2020) Ento(o)mics: the inter-
section of ‘omic’ approaches to decipher plant defense against 
sap-sucking insect pests. Curr. Opin. Plant Biol., 56, 153–161.

15. Deshmukh,R., Sonah,H., Patil,G. et al. (2014) Integrating omic 
approaches for abiotic stress tolerance in soybean. Front Plant Sci.,
5, 244.

16. Rajasundaram,D. and Selbig,J. (2016) More effort - more results: 
recent advances in integrative ‘omics’ data analysis. Curr. Opin. 
Plant Biol., 30, 57–61.

17. Gundla,N.K. and Chen,Z. (2016) Creating NoSQL Biological 
Databases with Ontologies for Query Relaxation. Procedia Com-
put Sci, 91, 460–469.

18. Wang,S., Pandis,I., Wu,C. et al. (2014) High dimensional bio-
logical data retrieval optimization with NoSQL technology. BMC 
Genom., 15, S3.

19. Medini,D., Donati,C., Tettelin,H. et al. (2005) The microbial pan-
genome. Curr. Opin. Genet. Dev., 15, 589–594.

20. Morneau,D. (2021) Pan-genomes: moving beyond the reference. 
Nat. Plants, 6, 914–920.

21. Hufford,M.B., Seetharam,A.S., Woodhouse,M.R. et al. (2021) De 
novo assembly, annotation, and comparative analysis of 26 diverse 
maize genomes. Science, 373, 655–662.

22. Zhu,M. and Dong,J. (2016) rDNAse: R package for generating 
various numerical representation schemes of DNA sequences.

23. Babak Khorsand,E.S., Zahiri,J., Sharif,M. et al. (2017) Stability 
Analysis in Differentially Expressed Genes.

24. Xiao,N., Cao,D.S., Zhu,M.F. et al. (2015) protr/ProtrWeb: R pack-
age and web server for generating various numerical representation 
schemes of protein sequences. Bioinformatics., 31, 1857–1859.

25. Horton,P., Park,K.J., Obayashi,T. et al. (2007) WoLF PSORT: 
protein localization predictor. Nucleic Acids Res., 35, W585–587.

26. Almagro Armenteros,J.J., Sonderby,C.K., Sonderby,S.K. et al.
(2017) DeepLoc: prediction of protein subcellular localization 
using deep learning. Bioinformatics., 33, 3387–3395.

27. Linding,R., Jensen,L.J., Diella,F. et al. (2003) Protein disorder 
prediction: implications for structural proteomics. Structure, 11, 
1453–1459.

28. Krogh,A., Larsson,B., von Heijne,G. et al. (2001) Predicting 
transmembrane protein topology with a hidden Markov model: 
application to complete genomes. J. Mol. Biol., 305, 567–580.

29. Petersen,T.N., Brunak,S., von Heijne,G. et al. (2011) SignalP 4.0: 
discriminating signal peptides from transmembrane regions. Nat. 
Methods, 8, 785–786.

30. Woodhouse,M.R., Sen,S., Schott,D. et al. (2021) qTeller: A tool 
for comparative multi-genomic gene expression analysis. Bioinfor-
matics., 38, 236–242.

31. Forestan,C., Aiese Cigliano,R., Farinati,S. et al. (2016) Stress-
induced and epigenetic-mediated maize transcriptome regulation 
study by means of transcriptome reannotation and differential 
expression analysis. Sci Rep, 6, 30446.

32. Warman,C., Panda,K., Vejlupkova,Z. et al. (2020) High expres-
sion in maize pollen correlates with genetic contributions 
to pollen fitness as well as with coordinated transcription 
from neighboring transposable elements. PLoS Genet., 16,
e1008462.

33. Walley,J.W., Sartor,R.C., Shen,Z. et al. (2016) Integration of omic 
networks in a developmental atlas of maize. Science, 353, 
814–818.

34. Stelpflug,S.C., Sekhon,R.S., Vaillancourt,B. et al. (2016) An 
Expanded Maize Gene Expression Atlas based on RNA Sequenc-
ing and its Use to Explore Root Development. Plant Genom., 9, 
plantgenome2015–04.

35. Opitz,N., Paschold,A., Marcon,C. et al. (2014) Transcriptomic 
complexity in young maize primary roots in response to low water 
potentials. BMC Genom., 15, 741.

36. Makarevitch,I., Waters,A.J., West,P.T. et al. (2015) Transposable 
elements contribute to activation of maize genes in response to 
abiotic stress. PLoS Genet., 11, e1004915.

37. Kakumanu,A., Ambavaram,M.M., Klumas,C. et al. (2012) Effects 
of drought on gene expression in maize reproductive and leaf 
meristem tissue revealed by RNA-Seq. Plant Physiol., 160, 
846–867.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad078/7374921 by guest on 19 M

ay 2024



12 Database , Vol. 00, Article ID baad078

38. Johnston,R., Wang,M., Sun,Q. et al. (2014) Transcriptomic anal-
yses indicate that maize ligule development recapitulates gene 
expression patterns that occur during lateral organ initiation. Plant 
Cell., 26, 4718–4732.

39. Ricci,W.A., Lu,Z., Ji,L. et al. (2019) Widespread long-range 
cis-regulatory elements in the maize genome. Nat. Plants, 5, 
1237–1249.

40. Ernst,J. and Kellis,M. (2017) Chromatin-state discovery 
and genome annotation with ChromHMM. Nat Protoc, 12, 
2478–2492.

41. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite 
of utilities for comparing genomic features. Bioinformatics., 26, 
841–842.

42. Dong,Z., Xiao,Y., Govindarajulu,R. et al. (2019) The regulatory 
landscape of a core maize domestication module controlling bud 
dormancy and growth repression. Nat. Commun., 10, 3810.

43. Bolduc,N., Yilmaz,A., Mejia-Guerra,M.K. et al. (2012) Unraveling 
the KNOTTED1 regulatory network in maize meristems. Genes 
Dev., 26, 1685–1690.

44. Oka,R., Zicola,J., Weber,B. et al. (2017) Genome-wide mapping 
of transcriptional enhancer candidates using DNA and chromatin 
features in maize. Genome Biol., 18, 137.

45. Vollbrecht,E., Duvick,J., Schares,J.P. et al. (2010) Genome-wide 
distribution of transposed Dissociation elements in maize. Plant 
Cell., 22, 1667–1685.

46. McCarty,D.R., Latshaw,S., Wu,S. et al. (2013) Mu-seq: sequence-
based mapping and identification of transposon induced muta-
tions. PLoS One, 8, e77172.

47. Mejia-Guerra,M.K., Li,W., Galeano,N.F. et al. (2015) Core Pro-
moter Plasticity Between Maize Tissues and Genotypes Contrasts 
with Predominance of Sharp Transcription Initiation Sites. Plant 
Cell., 27, 3309–3320.

48. Hoopes,G.M., Hamilton,J.P., Wood,J.C. et al. (2019) An updated 
gene atlas for maize reveals organ-specific and stress-induced 
genes. Plant J., 97, 1154–1167.

49. Cingolani,P., Platts,A., Wang le,L. et al. (2012) A program 
for annotating and predicting the effects of single nucleotide 
polymorphisms, SnpEff: SNPs in the genome of Drosophila 
melanogaster strain w1118; iso-2; iso-3. Fly. (Austin), 6,
80–92.

50. Mistry,J., Chuguransky,S., Williams,L. et al. (2021) Pfam: The 
protein families database in 2021. Nucleic Acids Res., 49, 
D412–D419.

51. Lyons,E. and Freeling,M. (2008) How to usefully compare homol-
ogous plant genes and chromosomes as DNA sequences. Plant J.,
53, 661–673.

52. Arendsee,Z., Li,J., Singh,U. et al. (2019) phylostratr: a framework 
for phylostratigraphy. Bioinformatics., 35, 3617–3627.

53. Schnable,J.C. and Freeling,M. (2011) Genes identified by visi-
ble mutant phenotypes show increased bias toward one of two 
subgenomes of maize. PLoS One, 6, e17855.

54. Li,P., Cao,W., Fang,H. et al. (2017) Transcriptomic profiling of the 
maize (Zea mays L.) leaf response to abiotic stresses at the seedling 
stage. Front Plant Sci., 8, 290.

55. Zheng,D., Wang,R., Ding,Q. et al. (2018) Cellular stress 
alters 3′UTR landscape through alternative polyadenyla-

tion and isoform-specific degradation. Nat. Commun., 9,
2268.

56. van Dijk,A.D.J., Kootstra,G., Kruijer,W. et al. (2021) Machine 
learning in plant science and plant breeding. iScience, 24,101890.

57. Yocca,A.E. and Edger,P.P. (2021) Machine learning approaches to 
identify core and dispensable genes in pangenomes. Plant Genom.,
15, e20135.

58. Tao,Y., Zhao,X., Mace,E. et al. (2019) Exploring and exploiting 
pan-genomics for crop improvement. Mol Plant, 12, 156–169.

59. Gordon,S.P., Contreras-Moreira,B., Woods,D.P. et al. (2017) 
Extensive gene content variation in the Brachypodium distachyon 
pan-genome correlates with population structure. Nat. Commun.,
8, 2184.

60. Wang,W., Mauleon,R., Hu,Z. et al. (2018) Genomic variation 
in 3,010 diverse accessions of Asian cultivated rice. Nature, 557, 
43–49.

61. Li,Y.H., Zhou,G., Ma,J. et al. (2014) De novo assembly of soybean 
wild relatives for pan-genome analysis of diversity and agronomic 
traits. Nat. Biotechnol., 32, 1045–1052.

62. Ohno,S. (1970) Evolution by Gene Duplication.
63. Yu,J., Golicz,A.A., Lu,K. et al. (2019) Insight into the evolution 

and functional characteristics of the pan-genome assembly from 
sesame landraces and modern cultivars. Plant Biotechnol. J., 17, 
881–892.

64. Liu,Y., Du,H., Li,P. et al. (2020) Pan-Genome of Wild and Culti-
vated Soybeans. Cell., 182, 162–176 e113.

65. Bayer,P.E., Golicz,A.A., Scheben,A. et al. (2020) Plant pan-
genomes are the new reference. Nat. Plants, 6, 914–920.

66. Golicz,A.A., Bayer,P.E., Barker,G.C. et al. (2016) The pangenome 
of an agronomically important crop plant Brassica oleracea. Nat. 
Commun., 7, 13390.

67. Zhao,Q., Feng,Q., Lu,H. et al. (2018) Pan-genome analysis high-
lights the extent of genomic variation in cultivated and wild rice. 
Nat. Genet., 50, 278–284.

68. Kimotho,R.N., Baillo,E.H. and Zhang,Z. (2019) Transcription fac-
tors involved in abiotic stress responses in Maize (Zea mays L.) 
and their roles in enhanced productivity in the post genomics era. 
PeerJ, 7, e7211.

69. Christine Tranchant-Dubreuil,M.R. and Sabot,F. (2019) Plant 
pangenome: impacts on phenotypes and evolution. In: Annual 
Plant Reviews Online. Wiley Online Library, pp. 1–25.

70. Yuan,Y., Xu,Y., Xu,J. et al. (2012) Predicting the lethal pheno-
type of the knockout mouse by integrating comprehensive genomic 
data. Bioinformatics., 28, 1246–1252.

71. Campos,T.L., Korhonen,P.K., Hofmann,A. et al. (2020) Combined 
use of feature engineering and machine-learning to predict essential 
genes in Drosophila melanogaster. NAR Genom. Bioinform., 2, 
lqaa051.

72. Aromolaran,O., Beder,T., Oswald,M. et al. (2020) Essential gene 
prediction in Drosophila melanogaster using machine learning 
approaches based on sequence and functional features. Comput 
Struct Biotechnol J, 18, 612–621.

73. Campos,T.L., Korhonen,P.K., Sternberg,P.W. et al. (2020) Predict-
ing gene essentiality in Caenorhabditis elegans by feature engi-
neering and machine-learning. Comput Struct Biotechnol J, 18, 
1093–1102.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad078/7374921 by guest on 19 M

ay 2024


	Maize Feature Store: A centralized resource to manage and analyze curated maize multi-omics features for machine learning applications
	 Introduction
	 Materials and methods
	 Overview of the maize feature store database
	 Maize feature store architecture
	 Application development
	 Data acquisition
	 Sequence feature generation
	 Structure feature generation
	 Expression feature collection
	 Chromatin feature generation
	 Count feature generation
	 Correlation feature collection
	 Varionomic feature generation
	 Other feature generation
	 Label generation
	 Data visualization
	 Downsampled analysis
	 User candidate gene analysis
	 Exploratory analysis
	 Data clustering

	 Results
	 Maize feature store workflow
	 Application of MFS on pan-genome classification
	 Unified features excel over individual subsets in maize gene classification: core vs. non-core categories

	 Discussion
	Supplementary material
	 Data availability
	 Abbreviations
	Funding
	Conflict of interest
	Acknowledgements
	References


