
Managing and monitoring a pandemic: showcasing a
practical approach for the genomic surveillance
of SARS-CoV-2
Mateusz Jundzill 1,2,*, Riccardo Spott 1, Mara Lohde 1, Martin Hölzer 3,
Adrian Viehweger 4 and Christian Brandt 1,2,5

1Institute for Infectious Diseases and Infection Control, Jena University Hospital, Erlanger Allee 103, Jena 07747, Germany
2Leibniz Center for Photonics in Infection Research (LPI), Albert-Einstein-Str. 9, Jena 07747, Germany
3Methodology and Research Infrastructure, Genome Competence Center (MF1), Robert Koch Institute, Seestraße 10, Berlin 13353, Germany
4Institute of Medical Microbiology and Virology, University Hospital Leipzig, Johannisallee 30, Leipzig 04103, Germany
5InfectoGnostics Research Campus, Philosophenweg 7, Jena 07743, Germany
*Corresponding author: Tel: +49 3641 9-390933; Email: mateusz.jundzill@med.uni-jena.de

Citation details: Jundzill, M., Spott, R., Lohde, M. et al. Managing and monitoring a pandemic: showcasing a practical approach for the genomic
surveillance of SARS-CoV-2. Database (2023) Vol. 2023: article ID baad071; DOI: https://doi.org/10.1093/database/baad071

Abstract
With the rapidly growing amount of biological data, powerful but also flexible data management and visualization systems are of
increasingly crucial importance. The COVID-19 pandemic has more than highlighted this need and the challenges scientists are facing.
Here, we provide an example and a step-by-step template for non-IT personnel to easily implement an intuitive, interactive data
management solution to manage and visualize the high influx of biological samples and associated metadata in a laboratory setting.
Our approach is illustrated with the genomic surveillance for SARS-CoV-2 in Germany, covering over 11 600 internal and 130 000 external
samples from multiple datasets. We compare three data management options used in laboratories: (i) simple, yet error-prone and
inefficient spreadsheets, (ii) complex and long-to-implement laboratory information management systems and (iii) high-performance
database management systems. We highlight the advantages and pitfalls of each option and outline why a document-oriented NoSQL
option via MongoDB Atlas can be a suitable solution for many labs. Our example can be treated as a template and easily adapted to
allow scientists to focus on their core work and not on complex data administration.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Managing a high sample influx
The start of the COVID-19 pandemic has created an unprece-
dented global genomic surveillance effort through whole
genome sequencing (WGS) to monitor the emergence and
evolution of the causing agent, SARS-CoV-2, on a larger
scale. To put this into perspective, the international Global
Initiative on Sharing Avian Influenza Data (GISAID; https://
www.gisaid.org/) collected over 15.84 million SARS-CoV-
2 whole genome sequences (as of August 2023). To better
coordinate and support these sequencing efforts, the Ger-
man government signed the Coronavirus Surveillance Regu-
lation (CorSurV) (1), which is comparable to initiatives from
other governments such as COG-UK (United Kingdom) (2)
or INSA-COG (India) (INSA-COG; https://www.pib.gov.in/
PressReleseDetailm.aspx?PRID=1684782) and compensated
laboratories for sequencing SARS-CoV-2-positive samples and
submitting the resulting genomes to the Robert Koch Institute
(RKI), Germany’s national Public Health institute, for nation-
wide genomic surveillance. As part of this regulation, the Jena

University Hospital sequenced collected samples for one of
the states in Germany (Thuringia) and submitted the ana-
lyzed genomes to the RKI via the ‘German Electronic Sequence
Data Hub’ (GISAID; https://www.rki.de/DE/Content/InfAZ/
N/Neuartiges_Coronavirus/DESH/DESH.html). We routinely
sequence approximately 200 SARS-CoV-2-positive samples
per month, which is a 10-fold increase from the start of the
project in early 2020 (MongoDB Charts dashboard; https://
bit.ly/3MtK2v2). We managed (as of January 2023) over
140 000 samples, including 11 600 sequenced in-house, gath-
ered from cooperation partners and GISAID samples from
Germany collected for research purposes. The sheer number
of samples makes it increasingly difficult to access the data
by normal means or to verify the overall sequencing progress
per sample, the integrity of the data, its origin and storage
location in the laboratory, while enforcing a uniform scheme.
To improve our data management strategies, we were look-
ing for a solution that is simple to learn and flexible, capable
of storing multiple datasets and metadata. It should also be
data source agnostic, allowing for data import from multiple

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

https://orcid.org/0009-0000-7264-9165
https://orcid.org/0000-0002-2103-167X
https://orcid.org/0009-0009-1718-7231
https://orcid.org/0000-0001-7090-8717
https://orcid.org/0000-0002-8970-5204
https://orcid.org/0000-0002-7199-3957
mailto:mateusz.jundzill@med.uni-jena.de
https://www.gisaid.org/
https://www.gisaid.org/
https://www.pib.gov.in/PressReleseDetailm.aspx?PRID=1684782
https://www.pib.gov.in/PressReleseDetailm.aspx?PRID=1684782
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/DESH.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/DESH/DESH.html
https://bit.ly/3MtK2v2
https://bit.ly/3MtK2v2
https://creativecommons.org/licenses/by/4.0/

2 Database , Vol. 00, Article ID baad071

sources, and accepting universal data formats. At the same
time, it was essential to maintain ease of use for technical
laboratory assistants, researchers, external partners and clin-
icians while quickly identifying and preventing data errors or
mistakes.

Similar needs and difficulties were observed in manag-
ing data in the mids of the Ebola epidemic in Sierra Leone
(2014/2015). These provided valuable parallels to the obser-
vations and challenges in managing epidemic data during
the SARS-CoV-2 pandemic. During the early stages of both
outbreaks, data loss was a significant problem due to inexpe-
rienced personnel, the absence of a centralized database and
uniform input files leading to oftentimes unnoticed mistakes
that contributed to significant data loss (3). Likewise, dur-
ing the SARS-Cov-2 pandemic in Ghana, the personnel was
overwhelmed by relying on manual systems, primarily based
on spreadsheets that forced them to transition toward more
advanced and automated database systems to streamline data
management processes.

The authors also emphasize the importance of integrating
data from various devices, such as polymerase chain reaction
(PCR) machines, showing the usefulness of using a stan-
dard, non-propertiary data format. In their example, the PCR
machine output was exported to a spreadsheet and integrated
by the integration team with the metadata for swift data
merging. Another challenge highlighted in the study relates
to separating data for the various stakeholders from the orig-
inal dataset, which was also solved by a proper database
system. Furthermore, the study underscores the significance
of visualizing geographical coordinates to identify potential
epidemiological hotspots and to have a visual overview of
all the data. Geographical visualization tools are essential to
improve the detection and response to disease outbreaks by
pinpointing areas with increased transmission risks (4). After
considering various data management systems, previous expe-
riences and our needs, we decided on a document-oriented
NoSQL database management system to manage biological
samples and continuously provide our research institute and
external partners with aggregated data and results.

Choosing a suitable data management system
We considered three suitable and popular options to man-
age biological samples: spreadsheets, laboratory information
management systems (LIMS) and database management sys-
tems (DBMS). Based on our previous experience, we consid-
ered the following criteria to be highly important:

• Difficulty: it should be easy to set up and maintain
• Performance: the ability to handle thousands of samples

and data requests
• Accessibility: should be able to be operated with various

computer skills and provide role management to separate
read, write and administrative rights

• Error management: robust and easy system to spot
spelling mistakes or incorrect data with data backup
options and corruption protection

• Scalability/Flexibility: the possibility for vertical and hor-
izontal scale and the capability of accepting a new type of
data after the initial set up

• Security: the system should be able to handle sensitive and
confidential data and protect from unauthorized access

• Maintenance cost: low time and financial cost of the
system maintenance

Spreadsheets
The widely used and simplest approach for handling data in a
laboratory is the spreadsheet component of an office produc-
tivity suite (e.g. Microsoft Excel, Google Sheets, LibreOffice
Calc). Spreadsheets are commonly used in research to store,
organize, analyze and plot data quickly. Data in a spreadsheet
are stored in a tabular format, ideally with each row contain-
ing a single record and each column an attribute describing the
record (long spreadsheet format). The unexpected downside
of its simplicity is that people who are not experienced with
data storage good practices may prioritize the appearance of
the data over data accessibility and transferability, e.g. color
coding or storing multiple datasets in one spreadsheet. More-
over, spreadsheets are unsuitable for large datasets due to
bad performance and navigation problems. The absence of
an indexed, unique ID system leads to data duplication, and
the lack of advanced data validation makes it hard to detect
typographical and formatting errors. Another downside is
how easily data records can be overwritten, exchanged or
misaligned. These problems can arise even without user inter-
ference due to the implemented autocorrection of office suites,
like removing leading zeros or auto-converting data to a cal-
endar or time format. Data corruption is so problematic that
Ziemmann et al. found gene name formatting errors in 704 of
3597 screened supplementary data sets from published arti-
cles (5). Furthermore, a proprietary compressed format (.xls,
.xlsx, .ods) may be inconsistent between different software
versions.

Despite all these disadvantages, Public Health England
used Microsoft Excel to store their SARS-CoV-2 data and
lost 16 000 entries in 2020 due to the maximum row limit
in Microsoft Excel (6).

Collaborative work on spreadsheets is problematic as the
entire file must be shared, which usually results in multiple
file versions being in circulation and requiring laborious and
error-prone merging. While cloud solutions like Google Calc
address this problem, they might be ill-suited for sensitive
information (7). While spreadsheets are a useful, simplis-
tic tool to support data administration, they are the least
favorable solution for continuous data storage.

Laboratory information management systems
An alternative solution is LIMS. LIMS are software appli-
cations designed to centralize and assist in managing labo-
ratory data, combining all laboratory devices and processes
in one integrated large system (8). As an analogy, LIMS per-
forms a similar function to business management software
like Enterprise Resource Planning (e.g. SAP) that is used to
manage company operation and integrate company depart-
ments. Generally, the software allows users to register data
and laboratory equipment, manage orders and provide the
functionality of an electronic lab book. LIMS vary from one
another and can be tailor-made or adjusted to suit the needs
of a company or institution. The scalability and performance
of LIMS depend on the chosen solution. The main advantage
of LIMS is the automation of routine tasks (e.g. results archiv-
ing, data sharing or stock monitoring) that it provides. LIMS
typically feature a web-based interface that allows users to

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

Database, Vol. 00, Article ID baad071 3

easily access the data and instruments. The ID tracking sys-
tem, often combined with a barcode reader, removes data
duplication problems. Moreover, automatic record update
through connected laboratory instruments reduces the time
and the risk of erroneous data input by personnel. Personal
logins, passwords and data encryption enforce data security,
role protection and secure access at every access point in the
network (9, 10). Depending on the chosen system or service,
data backup could be handled on an external or local server by
a software provider. LIMS can be complex and costly to imple-
ment and the deep integration of LIMS into the laboratory
network causes slow implementation, requires specialized IT
personnel to maintain the system and training for the everyday
user. Due to the aforementioned time consumption and cost,
LIMS might only be suited for some, mostly large institutions.

Database management systems
The middle ground between the simplicity of a spreadsheet
and the complexity of a LIMS is database management sys-
tem. A database management system (DBMS) is a software
for creating and managing databases. With such a program,
users can enter data into a database to collect, read, update
and delete large amounts of data. These systems can be
adapted to any kind of data, like spreadsheets, but are opti-
mized for storing and retrieving large datasets while provid-
ing access control mechanisms to ensure data security and
integrity, redundancy control (ID assignment), data auditing
and optimization for collaborative work. Additional ben-
efits include crash protection (database transaction system
based on commits), in-depth user-defined security options
(different security protocols, data encryption, registering user
actions in a separate file, real-time usage monitoring) and
data backup. In this article, we considered two of the most
commonly used groups of database management systems:
Relational Databases (RDBMS) and Non-Relational NoSQL
stores/DBMS.

Relational databases are the most common type of DBMS
and are well suited for storing structured data. Modern
RDBMS use the Structured Query Language (SQL) to access,
query and modify data that are stored in a relational table for-
mat. RDBMS enforces a predefined schema that needs to be
assumed before the database creation, thus providing limited
support for unstructured data compared to the latter group.
This often results in empty or underutilized fields (11). The
rigid data structure can make it complicated to accommodate
changing data needs or create a less clear data structure (12).

The other group, NoSQL DBMS, is a non-uniform col-
lection of database management systems/stores that are not
based on the traditional RDBMS model. Unlike the former
group of DBMS, each NoSQL store has distinct character-
istics and functionalities, making them unique systems with
their own data models. As a result, there is no uniform data
model across all NoSQL stores, and they differ significantly
from one another. Yet, most NoSQL databases are valued for
their flexibility and scalability (13). Unlike RDBMS, NoSQL
stores are usually schemaless, meaning they do not require
predefined and non-changing data structures at the cost of
performance. The data can be stored in various structures like
a collection of documents (MongoDB), graphs (Neo4J), key-
values (Redis) or wide columns (Apache Cassandra) (14). In
recent years, MongoDB emerged as one of the most popular
and widely used NoSQL stores. Thus, various online guides,

the integration of multiple tools and a supportive community
are available. Moreover, an extensive ecosystem is provided by
MongoDB, especially for their cloud-based solution. It offers a
user-friendly web browser interface, multiple server locations
to comply with local data protection regulations. Graphi-
cal user interface (GUI) tool—MongoDB Compass— allows
interaction with the database in a user-friendly way. Further-
more, the most crucial point is the availability of an online
visualization tool—MongoDB Charts—which provides visual
real-time data surveillance. This customizable data surveil-
lance reduces data administration complexity, offers external
stakeholders faster and aggregated data access and removes
the need to transfer data to other external visualization tools.

MongoDB
Description and structure of MongoDB
MongoDB is an open-source, document-oriented, NoSQL
database management system that has been actively developed
since 2009 (MongoDB; https://www.mongodb.com). Mon-
goDB stores data in collections of JSON-like documents (see
section ‘MongoDB document’ and Figure 1). It is available as
an open source, community edition, and as a commercial dis-
tribution that includes advanced security and administration
methods. It is also offered in a standalone, self-administered,
deployed local DBMS and a cloud-hosted database-as-a-
service variant (MongoDB Atlas). MongoDB Atlas simplifies
the complexities of deploying, managing and scaling Mon-
goDB DBMS without the need to buy additional hardware.
Moreover, the online version by default is replicated on three
servers (shards), forming a cluster and automatic failover,
providing an additional layer of redundancy. Despite the
fundamental difference between storing data in tabular and
document format, it is possible to find structural analogs to
a typical spreadsheet format (see section ‘MongoDB docu-
ment’). A document is self-describing and schemaless, provid-
ing complete flexibility. Documents contain information in a
‘key: value’ format for each document row. The ‘key’ serves as
a unique identifier like a category that is used to aggregate and
retrieve data that is stored as a ‘value’ (e.g. Species: ‘Staphylo-
coccus aureus’). This enables robust and readable data entry.
Keys do not have to be present in all documents, in contrast
to RBMS-based solutions, where keys are predefined across
all samples.

Setting up an online instance of Mongo does not require
extensive IT knowledge and can be done exclusively via a
GUI. The initial build, creating the first user, and populating
the database with prepared data in a CSV (comma-separated
values) spreadsheet format takes approximately 30 minutes
using the web browser interface of the Mongo Atlas web-
site. This approach is hardware agnostic and relies solely on
the internet connection. The data input can be done from a
JSON file (structured text format), a CSV spreadsheet import
or directly via the GUI. The import of data from spreadsheets
is especially useful for personnel who do not have advanced
programming expertise. Moreover, when regulations prohibit
data access from outside of the institution, the database can
be deployed in an internal network or on a selected local
machine. However, it needs to be stressed that a local deploy-
ment requires more IT expertise and time, as all the security
and data integrity steps are not automated and depend on
the data administrator. Therefore, it is not recommended for

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

https://www.mongodb.com

4 Database , Vol. 00, Article ID baad071

Figure 1. MongoDB structure. One server/cluster can store several databases. Each database can contain collections that store multiple and separate
records as documents (in JSON style).

beginners. In cases where only a portion of data should be
accessed from external networks, Mongo Sync allows the
synchronization of local and online databases.

Further database customization options are also avail-
able, providing administrators with user-written scripts. These
scripts allow for more advanced automatic data manipulation
or backups (e.g. auto-correction of common mistakes, enforc-
ing a uniform data structure and creating additional variables
based on previously entered data).

MongoDB document
MongoDB documents have a structure of JSON-like
files (Figure 2). A MongoDB JSON data point has a struc-
ture of ‘key’: ‘value’, separated from each other by a comma.
The database can be populated directly from a JSON file or a
CSV spreadsheet. However, CSV import does not allow array
(nested) data entry or distinguishing between data types.

Numerical values are written without quotes. The ‘_id’ field
is recognized by the MongoDB document identification field
that allows future updating of a document. An example of
an array that contains multiple key:value records under one
general key are ‘Mutations’ and ‘Deletions’ keys (Figure 2).

Visualization of data and results
Data visualization and sharing for biological samples can be
accomplished through standalone tools such as Nextstrain
(https://www.nextstrain.org) and Microreact (https://www.
microreact.org). These platforms allow uploading and visu-
alizing genomic datasets through a web-based application
and sharing them with URLs. However, these tools require
tool-specific dataset and adjusted metadata formats for the
visualization. Additionally, they can only update the data with
new records, by an entire dataset resubmit, limiting efficient
real-time data monitoring. Moreover, the separate platform
adds further complexity and additional data administration
to the preexisting data solution.

To address these challenges, we propose an alternative solu-
tion that uses an integrated MongoDB Atlas tool—MongoDB
Charts. MongoDB Charts is a self-updating data visualization
tool to present records from the MongoDB Atlas database.

MongoDB Charts works in a drag-and-drop fashion by select-
ing desirable graphs and fields from any collection or database
stored on a cluster. The provided data points can be filtered
and modified via the aggregation feature without changing
the data. These allow conditionally selecting a part of the
data, e.g. for a particular period or below a cutoff value,
doing mathematical manipulations to change units, or com-
bining data from multiple fields. MongoDB Charts allows
users to generate standard charts like bar-, line- and pie charts,
numeric figures, tables and map charts (Figure 3). The lat-
ter, in particular, allows the real-time display of results stored
in the database on one or more maps for surveillance pur-
poses. Online dashboards store the created plots; the user can
arrange multiple charts together and share them online on
a user access principle or publicly. Multiple dashboards can
be created to present data for different audiences (e.g. exter-
nal partners, laboratory personnel, medicine practitioners).
Furthermore, the MongoDB Charts visualization method is
vital for data exploration, pattern recognition and spotting
potential errors quickly.

Implementation of MongoDB for biological
samples
Setup
In the following steps, we present a simplified descrip-
tion of how to set up MongoDB for a laboratory environ-
ment using the web interface of Mongo Atlas and how to
manage the database with a locally installed Mongo Com-
pass (MongoDB Compass; https://www.mongodb.com/try/
download/compass). To make this process as straightforward
as possible, we additionally provide a step-by-step proto-
col (15) and GitHub repository (Routine Seq SARS-CoV-2
MongoDB Database; https://github.com/AggresiveHayBale/
Routine-Seq-SARS-CoV-2-MongoDB-Database) with useful
commands and curation scripts that could be readapted
for other purposes. The online protocol and the repository
will be updated in case of future changes in the process.
Firstly, we create the cluster (see Figure 1 for an overview
of the MongoDB structure) directly via the MongoDB Atlas
website (MongoDB Atlas; https://www.mongodb.com/atlas/
database), after creating a user account and a project (e.g.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

https://www.nextstrain.org
https://www.microreact.org
https://www.microreact.org
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass
https://github.com/AggresiveHayBale/Routine-Seq-SARS-CoV-2-MongoDB-Database
https://github.com/AggresiveHayBale/Routine-Seq-SARS-CoV-2-MongoDB-Database
https://www.mongodb.com/atlas/database
https://www.mongodb.com/atlas/database

Database, Vol. 00, Article ID baad071 5

Figure 2. Example of a MongoDB JSON database entry for one sample (grey background). Shown are all the 3–4 data types and their corresponding
explanation on the right. The database entry is separated by category (text in black, called ‘key’) and value of data (bold—‘value’) for visualization
purposes.

one project per institute or working group). We suggest select-
ing a free shared cluster tier that is optimal for a small-scale
deployment in a research institution. The server provider and
location could be selected based on the preferred data protec-
tion policies of the user’s country of origin or the location of
an institution.

Secondly, create a database and a collection on the server
from Mongo Compass. The database and collection name
should not use any special characters (like ‘$,(,§,%’ or non-
standard English characters) and be as concise as possible.
The server/cluster can be accessed with Mongo Compass
by using the provided connection string, which is given
during cluster creation (‘mongodb+srv://<username>:<pass-
word>@<hostname>.net/’).

This completes the initial setup, and the database can now
be filled with data, e.g. by importing a CSV file.

At the beginning of implementing MongoDB in an insti-
tution, we suggest keeping the already established method of

data archiving (e.g. spreadsheets) still operational to reduce
potential damage done to the data by inexperienced users.
Additional advanced functions can be added after getting
more accustomed to the basic functionality. The adminis-
trator should verify default settings in the security tab to
limit network access and create user profiles with adequate
roles. There are three predefined major roles: ‘Read’, which
can only view the database but cannot modify documents,
‘Read/Write’, which can view and modify entries and ‘Admin’,
which have read/write permissions but can also modify the
database settings. To avoid potential security infringements
and improve data integrity, the lowest possible role should be
given to the user (e.g. not giving a read/write role to personnel
that does not update the database) and avoid using the admin
role for routine work.

It is important to add a database backup for data security
or recovery purposes. The quick exporting of a full database
in Mongo Compass to a JSON/CSV file would not fully keep

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

6 Database , Vol. 00, Article ID baad071

Figure 3. MongoDB Charts dashboard example based on the Thuringian Surveillance Effort for SARS-CoV-2 genomic sequencing. MongoDB Charts are
accessible at https://www.bit.ly/3MtK2v2.

the integrity of the data and is not a sustainable, long-term
solution. The Mongo Dump command available from Mongo
Tools toolkit provides a better approach that allows restora-
tion or replication of the database without such problems.
Alternatively, higher cluster tiers provide automatic backup
plans administered by the MongoDB company.

Data auditing can be performed from Mongo Compass’
Schema tab, which gives insight into a data structure and
allows to catch common mistakes like wrongly entered
numerical data, alternative spelling or text formatting (e.g.
München, Munchen, munchen, Munich). In the most naive
approach, the data correction can be done by manual value
change in the database, updating entries with new values from
JSON/CSV files.

Non-manual data curation can be performed either by
using custom-made scripts that will correct common mistakes
or by enforcing strict data integrity checks via predefined
schema. Schema rules can be directly set from the MongoDB
Atlas website or through MongoDB Compass (validation
rules, see Figure 4).

From sample to database entries (example:
SARS-CoV-2 genomic surveillance)
In the following part, we present a shortened example of a
DBMS-driven data management as a standard operating pro-
cedure (SOP) for SARS-CoV-2 genomic surveillance that can
be adjusted to any biological sample or lab procedure. Addi-
tionally, we provide a more extensive version as a version-
controlled online supplement (16). Our methodology uses
a CSV document for data import, allowing the protocol to
remain independent of any specific method. This flexibility
enables the application of our approach to update data from
diverse sources, including machine-generated reports from
e.g. PCR machines—the current dominant form of SARS-
CoV-2 surveillance. Many of the steps can be changed but

we went with a CSV export/import procedure to allow easy
data manipulation for technical lab assistants without any
database knowledge. Importing the initial CSV can be further
simplified by using an online Google Forms survey (Google
Forms; https://forms.google.com/) that is connected to an
online Google Calc spreadsheet. This approach can work as
an additional level of data curation, as an option to central-
ize data import to the database or if additional software like
MongoDB Compass cannot be installed.

1. Sample(s) arrives for DNA sequencing from an internal
or external partner

2. Based on the information provided by the partner, a
basic sample entry is created from a template spread-
sheet CSV. The template contains fields like Sample_ID,
Status, Isolation_Date, Postal_Code, Seq_Reason, Sam-
ple_Type, Storage, Submitting_Lab, Sequencing_Lab
and Comments in the header of the CSV

3. The CSV is filled out and imported to the database using
MongoDB Compass application or via the command
line tool (Mongoimport)

4. The prepared input is verified and adjusted to a stan-
dardized schema

5. The successful upload is confirmed. If entered data
offend the previously established scheme, the upload
would fail (e.g. postal code containing letters or status
containing a different value than predefined)

6. Data input is verified using MongoDB Compass or
MongoDB Charts dashboard plots (e.g. erroneous geo-
graphical points on the map, unusual data values).
Optionally custom-made scripts can be executed to
detect these inconsistencies or add additional informa-
tion based on the other fields

7. Laboratory personnel checks and selects samples in
MongoDB Compass for sequencing by querying the
database with e.g.: {Status: ‘not sequenced’}

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

https://www.bit.ly/3MtK2v2
https://forms.google.com/

Database, Vol. 00, Article ID baad071 7

Figure 4. Example of basic MongoDB schema rules (gray background) accepted by the MongoDB Compass validation tab. For better clarity, we added
our own fields like ‘Status’, ‘Isolation _ Date’, ‘Submitting_ Lab’, etc.

8. The Status field can then be changed to e.g. the name of
the person or ‘being processed’ to mark the sample as
being processed for others

9. A CSV can then be exported to modify later and printed
for the lab to work with. A CSV can be exported by
using the {Status:{‘being processed’}} in the search bar
and then exported as CSV

10. Samples that are sequenced and or analyzed can be
updated in the exported CSV and then import the new
information to the DB

Conclusion
The increasing amount of data and metadata collected by
medical and research facilities require more comprehensive
and efficient solutions for data storage. Traditional solutions
like spreadsheet files are too cumbersome and do not work
after exceeding a certain amount of data. At the same time,

other solutions like laboratory management software and
relational databases are too complex and time-consuming to
implement and maintain for most people. MongoDB is an effi-
cient and flexible tool for managing biological samples and
data. It offers a range of features that make it well suited
for managing large data collections. It includes a user-friendly
graphical user interface, the ability to easily store and retrieve
data, scalability and security. One of the most crucial elements
of surveillance, the process of delivering and communicating
data, is streamlined by integrating an automatically updated
visualization tool, thus removing the need for additional soft-
ware maintenance and providing direct, hassle-free access to
the results. We provide an easy-to-read, use and adapt tem-
plate for implementing MongoDB into routine laboratory
data management that allows scientists to focus on their core
work and not on complex data administration. The example
uses genomic sequencing data to demonstrate the protocols
in a more challenging complex dataset. Our approach also

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

8 Database , Vol. 00, Article ID baad071

applies to other types of biological data (e.g. PCR, antibiotic
susceptibility testing) with less intricate internal structures.

Funding
This research was supported by Federal Ministry of Educa-
tion and Research (BMBF) [project ‘SARS-CoV-2Dx’, FKZ:
13N15745 and project ‘Innovative molecular and biochemical
assays for rapid diagnostics, drug development and new ther-
apy concepts (LPI-BT5)’, FKZ:13N15720]; We acknowledge
support by the German Research Foundation [Projekt-Nr.
512648189] and the Open Access Publication Fund of the
Thueringer Universitaets- und Landesbibliothek Jena.

Conflict of interest
None declared.

References
1. Federal Ministry of Health. (2021) Verordnung zur moleku-

largenetischen Surveillance des Coronavirus SARS-CoV-2.
(Coronavirus-Surveillanceverordnung – CorSurV). https://
www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_
Downloads/C/Coronavirus/Verordnungen/CorSurV_BAnz_AT_
19.01.2021_V2.pdf (1 February 2023, date last accessed).

2. Smith,D. and Bashton,M. (2020) An integrated national scale
SARS-CoV-2 genomic surveillance network. The Lancet Microbe,
3, E99–E100.

3. Owada,K., Eckmanns,T., Kamara,K.B.O.B. et al. (2016) Epidemi-
ological data management during an outbreak of Ebola virus
disease: key issues and observations from Sierra Leone. Front.
Public Health, 4, 163.

4. Obodai,E., Kyei,G.B., Aboagye,J. et al. (2021) Data management
during COVID-19 outbreak response in Ghana: a reference labo-
ratory perspective on key issues and measures. Ghana Med. J., 55,
51–55.

5. Ziemann,M., Eren,Y. and El-Osta,A. (2016) Gene name errors
are widespread in the scientific literature. Genome Biol.,
17, 177.

6. Fetzer,T. and Graeber,T. (2021) Measuring the scientific effective-
ness of contact tracing: evidence from a natural experiment. Proc.
Natl. Acad. Sci., 118, e2100814118.

7. Domingo-Ferrer,J., Farras,O., Ribes-González,J. et al. (2019)
Privacy-preserving cloud computing on sensitive data: a survey
of methods, products and challenges. Comput Commun., 140,
38–60.

8. Sun,D., Wu,L. and Fan,G. (2021) Laboratory information man-
agement system for biosafety laboratory: safety and efficiency. J.
Biosaf. Biosecurity, 3, 28–34.

9. Junaid,S. and Jangda,Z. (2020) Successful deployment of a lab-
oratory information management system LIMS; striding towards
modern, paperless labs. In: International Petroleum Technol-
ogy Conference, Kingdom of Saudi Arabia, Dhahran. IPTC-
19656-MS.

10. Oluwole,O.G., Oosterwyk,C., Anderson,D. et al. (2022)
The implementation of laboratory information manage-
ment system in multi-site genetics study in Africa: the
challenges and up-scaling opportunities. J. Mol. Pathol., 3,
262–272.

11. Lee,K.K.Y., Tang,W.C. and Choi,K.S. (2013) Alternatives to rela-
tional database: comparison of NoSQL and XML approaches
for clinical data storage. Comput. Methods Programs Biomed.,
110, 99–109.

12. Gamal,A., Barakat,S. and Rezk,A. (2021) Standardized electronic
health record data modeling and persistence: a comparative review.
J. Biomed. Inform., 114, 103670.

13. Gupta,A., Tyagi,S., Panwar,N. et al. (2017) NoSQL databases:
critical analysis and comparison. In: International Conference on
Computing and Communication Technologies for Smart Nation
(IC3TSN), India, Gurgaon, pp. 293–299.

14. Cattell,R. (2011) Scalable SQL and NoSQL data stores. ACM
Sigmod Record, 39, 12–27.

15. Jundzill,M., Spott,R., Lohde,M. et al. (2023) Create a MongoDB
Atlas cluster. Protocols.io.

16. Jundzill,M., Spott,R., Lohde,M. et al. (2023) SOP - Routine SARS-
CoV-2 Sequencing Data Administration. Protocols.io.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad071/7319975 by guest on 07 M

ay 2024

https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/C/Coronavirus/Verordnungen/CorSurV_BAnz_AT_19.01.2021_V2.pdf
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/C/Coronavirus/Verordnungen/CorSurV_BAnz_AT_19.01.2021_V2.pdf
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/C/Coronavirus/Verordnungen/CorSurV_BAnz_AT_19.01.2021_V2.pdf
https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/C/Coronavirus/Verordnungen/CorSurV_BAnz_AT_19.01.2021_V2.pdf

	Managing and monitoring a pandemic: showcasing a practical approach for the genomic surveillance of SARS-CoV-2
	 Introduction
	 Managing a high sample influx
	 Choosing a suitable data management system
	 Spreadsheets
	 Laboratory information management systems
	 Database management systems

	 MongoDB
	 Description and structure of MongoDB
	 MongoDB document
	 Visualization of data and results

	 Implementation of MongoDB for biological samples
	 Setup
	 From sample to database entries (example: SARS-CoV-2 genomic surveillance)

	 Conclusion
	Funding
	Conflict of interest
	References

