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Abstract
Cancer prevention is one of the most pressing challenges that public health needs to face. In this regard, data-driven research is central 
to assist medical solutions targeting cancer. To fully harness the power of data-driven research, it is imperative to have well-organized 
machine-readable facts into a knowledge base (KB). Motivated by this urgent need, we introduce the Collaborative Oriented Relation 
Extraction (CORE) system for building KBs with limited manual annotations. CORE is based on the combination of distant supervision 
and active learning paradigms and offers a seamless, transparent, modular architecture equipped for large-scale processing. We focus 
on precision medicine and build the largest KB on ’fine-grained’ gene expression–cancer associations—a key to complement and 
validate experimental data for cancer research. We show the robustness of CORE and discuss the usefulness of the provided KB.
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Introduction
In 2020, there were 19.2 million cancer cases worldwide. The 
World Health Organization estimates a 32% overall increase 
by 2040.1 With this growing global burden, cancer prevention 
is one of the century’s most pressing public health challenges 
and data-driven research is crucial for assisting the develop-
ment of medical solutions to address them. In the last few 
years, cancer research increasingly relied on microarray and 
next-generation sequencing technologies, which provide raw 
‘experimental data’ about ‘gene expression–cancer interac-
tions’ (1, 2). These interactions hold vital information to guide 
diagnosis, assess prognosis or predict therapy response (3, 4). 
To fully harness the potential of this data, they must be made 
readily accessible and organized in a comprehensive manner. 
This is where Knowledge Bases (KBs) come into play, provid-
ing machine-readable knowledge that connects cutting-edge 
technologies with data-driven research to support the fight 
against cancer (5).

Although experimental data are invaluable for cancer 
research, they require further investigation, processing and 
validation by experts to be used to populate a KB. Luck-
ily, in most cases, the analysis and interpretation of exper-
imental data are described in peer-reviewed publications, 

1https://gco.iarc.fr/tomorrow/en/dataviz/bubbles?sexes=0&mode=population

making the scientific literature a critical source to comple-
ment and validate the data. Given the high economical and 
time costs to manually extract knowledge ( e.g. scientific 
facts) from the domain-specific literature (6–8), in recent 
years, Machine Learning (ML) methods and automated tech-
niques for Knowledge Base Construction (KBC) have flour-
ished (9–11). The main bottleneck for KBC systems is the 
requisite of large and expensive labeled training data to per-
form Named Entity Recognition and Disambiguation () and 
Relation Extraction (RE).

Distant supervision (12, 13) and active learning (14, 15) 
are the main paradigms adopted to address this limitation 
(16, 17). In this work, we use both paradigms in conjunction 
to build a modular, pluggable, transparent and scalable KBC 
system focusing on the discovery of ‘gene expression–cancer’ 
associations.

We note that there are a handful of knowledge resources 
containing data about gene expression–cancer associa-
tions (18–23) and most of them only contain experimen-
tal data (18–21). A small minority—e.g. BioXpress (22) 
and OncoMX (23)—also integrates knowledge extracted 
from the biomedical literature. To do so, they rely on 
Disease-Expression Relation Extraction from Text (DEX-
TER) (24), a state-of-the-art method based on ‘pattern match-
ing’ techniques. CoMAGC (25) and OncoSearch (26) are 
other literature-based resources (27, 28), modeling also the 
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particularly valuable fine-grained aspects of gene expression–
cancer associations. Still, CoMAGC only consists of 821 
sentences on prostate, breast and ovarian cancers, while 
OncoSearch is not maintained.

More general and large-scale resources on gene–disease 
associations—i.e. DisGeNET (27) and the Literature-derived 
Human Gene-Disease Network (LHGDN) (28)—store
coarse-grained information expressing the existence of an 
association between gene expression and cancer, which is 
often insufficient to model such complex, faceted relationships 
effectively.

Hence, there is a need for KBC systems that can scale 
to large text corpora and stay up to date while generat-
ing fine-grained information about gene expression–cancer 
associations. We present the Collaborative Oriented Relation 
Extraction (CORE) system, a KBC system based on the combi-
nation of automated ML-based methods and domain experts’ 
feedback. CORE features a seamless, transparent, modular 
architecture, where the different components can be easily 
plugged-in. It also employs active learning to bootstrap the KB 
to be produced and exploits the fine-grained aspects involved 
in gene expression–cancer associations to perform iterative 
tests that measure the reliability of the data to be stored in 
the KB. Finally, it returns small, selected samples to domain 
experts for annotation. The high-quality data generated by 
this process are then used as reinforcement to retrain the ML 
models from scratch. Active learning makes CORE suited to 
iterative KB versioning. Therefore, with the data annotated by 
domain experts, retrained ML models are deployed to build 
subsequent versions of the KB.

The experimental evaluation shows the robustness of the 
proposed approach by highlighting how CORE scales to large 
text corpora with little human annotations. Additionally, 
when compared to the state-of-the-art in a KB reconstruc-
tion task, the performance of CORE confirms the system 
effectiveness in this domain. We have made the KB derived 
by CORE available as Open Data (29), provided with a 
SPARQL Protocol and RDF Query Language (SPARQL) end-
point for querying: http://w3id.org/corekb/sparql. The KB can 
also be accessed via COREKB (30), an intuitive and easy-to-
use search platform: https://gda.dei.unipd.it. The source code 
is available at https://github.com/GDAMining/core.

The rest of the article is organized as follows: Section 
(Background) presents the required background; Section 
(The CORE system) outlines the CORE system; Sections 
(NERD)–(Active learning) describe the components of CORE; 
Section (Implementation and experiments) presents the sys-
tem settings and the experiments; Section (KB exploration) 
performs some exploratory queries and analyses on the gen-
erated KB; Section (Search platform) showcases the search 
platform and Section (Conclusions and future work) draws 
final remarks.

Background
Precision medicine and gene expression
Generally, precision medicine is about tailoring of medical 
treatment to the characteristics of an individual patient and 
moves beyond the traditional approach of stratifying patients 
into treatment groups based on phenotypic markers (31). 
Among the different fields of medicine, precision medicine 
has the greatest impact in cancer research. In this context, 

precision medicine involves the use of an individual patient’s 
genomics information to guide diagnosis, prognosis, treat-
ment and prevention of cancer for that patient. In other 
words, precision medicine is a multifaceted approach that 
involves several critical aspects such as pharmacogenomics, 
pharmacodynamics and the impact of genetic variations on 
an individual’s response to cancer treatments like chemother-
apeutics (32). It also considers various factors, including age, 
ethnicity, sex and lifestyle habits, as prognostic indicators, as 
well as diagnostic aspects related to disease identification and 
its severity. Among the factors that identify the different risk 
outcomes in patients, alterations in gene expression patterns 
play a central role (3). In fact, genes contain the informa-
tion required to create proteins and dictate cellular functions, 
but it is the ‘gene expression’ that determines the cellular 
phenotype—and therefore the disease development. More-
over, abnormalities in the expression of microRNAs—small 
RNAs that post-transcriptionally regulate the expression of 
their target genes—have recently been associated with can-
cer (33, 34). Thus, identifying genes and microRNAs whose 
expression levels interact with cancer status is imperative to 
advance cancer research (3).

Gene expression–cancer resources
Most knowledge resources about ‘gene expression–cancer
associations’ consist of experimental data obtained through 
microarray and next-generation sequencing tech-
nologies (18–21). A relevant example is GENT2 (18), which 
provides a search platform for gene expression patterns across 
different normal and tumor tissues, compiled from public gene 
expression datasets. Another platform is the Metabolic gEne 
RApid Visualizer (19), which provides access to gene expres-
sion datasets and compares gene expressions across human 
tissues and cell types. The International Cancer Genome Con-
sortium (20) is a collaborative effort to characterize genomic 
abnormalities in 50 different cancer types, which provides a 
data portal containing data from 24 cancer projects, includ-
ing The Cancer Genome Atlas (21). As explained earlier, these 
resources are valuable but provide raw data that need to 
be further processed and validated to be effectively used in 
precision medicine.

Beyond experimental data, BioXpress (22) and
OncoMX (23) also integrate knowledge extracted—either 
manually or automatically—from the biomedical litera-
ture (22, 23). BioXpress is a KB storing genes that are dif-
ferentially expressed in adjacent normal and tumor tissues 
from the same patients. On the other hand, OncoMX is a KB 
for exploring cancer biomarkers, which encompasses more 
than 1000 unique biomarker entries mapped to 20 576 genes 
that have either mutations or differential expressions in can-
cer. In particular, both resources consider data automatically 
extracted by DEXTER (24), a text-mining expert system that 
identifies gene and microRNA expressions in disease sam-
ples from sentences selected from the relevant literature. To 
the best of our knowledge, DEXTER is the most advanced 
text-mining system for gene expression–cancer associations. 
However, the use of pattern matching techniques—based on 
manually defined regular expressions—to extract relation-
ships limits DEXTER flexibility and hampers its applicability 
to a broad range of new, unseen sentences. In this regard, we 
show that DEXTER fails to extract knowledge from sentences 
whose syntactic structure differs from its predefined patterns. 
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Thus, it appears clear that more adaptive RE methods are 
required to build KBC systems capable of scaling to large-
scale text corpora, made of heterogeneous documents written 
in different styles.

Regarding literature-based resources, CoMAGC (25) is 
a corpus developed to train RE methods targeting gene 
expression–cancer associations. In CoMAGC, each sentence 
is annotated with different concepts that together express 
(i) how a gene changes, (ii) how a cancer changes and (iii) 
the interaction between gene and cancer changes. Together, 
the different concepts can be used to infer the prospective 
roles of genes in cancer and to classify genes into classes 
according to the inferred roles. Relying on the CoMAGC 
annotation schema, OncoSearch (26) retrieves sentences men-
tioning gene expression changes in cancers from Medline 
abstracts. Specifically, OncoSearch queries seek (i) whether 
a gene is up- or downregulated, (ii) whether a given cancer 
progresses or regresses based on the given gene expression 
change and (iii) the expected role of the gene in the can-
cer. While relevant, CoMAGC is small-scale and OncoSearch 
is not maintained, making them limited resources. On the 
other hand, general, large-scale and widely used resources 
about gene–disease associations, such as DisGeNET (27) 
and LHGDN (28), store information that is not specific 
enough to be effectively used to model gene expression–cancer
relationships.

Knowledge base construction
KBs have gained a great deal of attention recently as a key 
component for supporting search and recommendations at the 
Web scale. From seminal works such as DBPedia (35), Free-
base (36) and YAGO (37) to community-driven projects such 
as WikiData (38), KBs have become a central asset in sev-
eral applications. To build them, KBC spans different areas 
of data management and artificial intelligence. Data integra-
tion (39, 40), data cleaning (41), NERD (42–44), RE (45–47) 
and active learning (14, 15, 48) are critical to ensure the accu-
rate and scalable construction of KBs. In this regard, several 
systems that include the latest advances in these areas have 
been built  (9–11, 49).

KBs are also increasingly used by large companies and 
organizations as a means for organizing and understanding 
their data (50–53). Industry-scale KBs are typically derived 
from numerous sources and contain a wealth of informa-
tion that is used in downstream applications (54). One of the 
few published reports of an end-to-end industrial system to 
build, maintain and use such KBs is the work by Deshpande 
et al. (50). We follow a similar focus on data quality and 
clear methodology for bootstrapping a KB. Besides, we agree 
that an imperfect KB is still useful for real-world applications 
and that maintenance is also important as facts evolve over
time.

The CORE system
Preliminaries
Let us consider a directed graph G = (V,E), where E ⊆
{(v1,v2) | (v1,v2) ∈ V × V} is the set of edges connecting 
ordered pairs of vertices. Given an edge e = (v1,v2) ∈ E, we call 
v1 the source vertex and v2 the target vertex. In our context, 
the nodes of G are entities and the edges are the relationships 
between them.

Table 1. Description of the aspects involved in gene expression-cancer 
associations. For each aspect, we report its domain values and the 
corresponding descriptions.

Aspect Value Description

CGE up The expression of a gene 
is increased.

down The expression of a gene 
is decreased.

notinf The change of gene 
expression is unknown.

Change of cancer 
status (CCS)

progression The cell or tissue acquires 
cancerous properties as 
gene expression level 
changes.

regression The cell or tissue loses 
cancerous properties as 
gene expression level 
changes.

notinf The change of cancer-
ous properties of cell or 
tissue is unknown.

Gene–cancer 
interaction (GCI)

causality There is a cause-effect 
relationship between 
CGE and CCS.

correlation There is a correlation 
between CGE and CCS.

notinf The interaction between 
CGE and CCS is 
unknown.

Definition 1. (Aspect) We call aspect an attribute of a 
relationship between a pair of entities. An aspect Ai
has a name and a domain D = {ai1,… ,ain}, where 
aij ∈ Ai is the jth aspect value of Ai. Dom(Ai) = D
returns the domain of Ai (when it is clear from the 
context, the aspect value aij ∈ Ai is referred to as aj).

Example 1. Let us consider gene–cancer associations. 
There are three aspects describing a possible 
relationship (e) between gene (v1) and cancer (v2): the 
change of gene expression (CGE), the change of 
cancer status (CCS) and the gene–cancer interaction 
(GCI). Following Definition 1, CGE, CCS and GCI are 
the names of the aspects with the following domains: 
Dom(CGE) = {up,down,notinf}, Dom(CCS) =
{progression,regression,notinf} and 
Dom(GCI) = {causality, correlation,
notinf}.

Details about the aspect domains are given in Table 1.

Definition 2. (multi-aspect relationship) Given a graph 
G(V,E) and a set of aspects 𝒜 = {Ai}n

i=1, a tuple of 
aspect values (a1j,… ,anj) associated with e = (v1,v2)
∈ E defines a multi-aspect relationship between v1
and v2.

Definition 3. (signature function) Given a set of 
aspects 𝒜 = {Ai}n

i=1 and an alphabet Σ, we define 
s : ∏n

i=1 Ai → S ⊆ Σ*;s(a1j,…,anj) ↦ type as the 
signature function that maps a multi-aspect 
relationship to a type in S, called the signature set.
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Table 2. Inference rules for gene classes. For each combination of CGE, CCS and GCI, we report the expected gene class. Gene classes refer to the 
role that a given gene plays in a specific disease. Following (25, 26), a biomarker represents a gene that exhibits altered expression levels in cancer, 
but which is not (yet) identified as an oncogene or a tumor suppressor gene. In Rule 5, CGE and CCS can assume any value between {up,down} and 
{progression,regression}.

Rule number CGE CCS GCI Gene Class

1 up progression causality oncogene
2 up regression causality tumor suppressor gene
3 down regression causality oncogene
4 down progression causality tumor suppressor gene
5 up|down progression|regression observation biomarker

The signature function defines a set of mapping rules 
depending on the domain of interest. We use the signature 
function to map multi-aspect gene expression–cancer relation-
ships to gene prospective roles in cancer ( e.g. oncogene or
biomarker). Table 2 provides the inference rules used to 
derive the expected gene roles. Gene roles allow us to dis-
tinguish the genes that are responsible for oncogenesis from 
those that are not; this is essential information for effective 
cancer research and therapy design (55).

Definition 4. (tagging function) Given an edge e ∈ E
and the signature set S, we define 𝜎 : E → S;𝜎(e) ↦
type as the function tagging an edge with a signature 
type.

The tagging function associates a signature type with an 
edge of the graph. In this work, we use the tagging function to 
label edges with gene prospective roles.The graph represents 
gene expression–cancer associations as gene prospective roles 
in cancer.

Overview
The goal of the CORE system is to harvest facts from text 
corpora to populate KBs. We model a KB as a directed 
graph G made up of entities connected by typed relationships. 
Facts (or statements) are (v1,e,v2) triples, where v1,v2 ∈ V, 
e = (v1,v2) ∈ E and 𝜎(e) ∈ S.

To obtain facts, CORE collects the scientific literature from 
different sources, identifies sentences containing pairs of enti-
ties relevant to the considered task and extracts aspects from 
them. Depending on the combination of extracted aspect val-
ues, a sentence expresses a specific signature type. Note that, 
for a given pair of entities, different sentences can express 
various signature types, as we show in the next example.

Example 2. See these two sentences from the 
biomedical literature:

(i) Colorectal cancer (CRC) growth and progression is 
frequently driven by RAS pathway activation through 
upstream growth factor receptor activation or through 
mutational activation of KRAS or BRAF.

(ii) Somatic mutations of the BRAF gene, causing consti-
tutive activation of BRAF, have been found in various 
types of human cancers such as malignant melanoma, 
and CRC.

In both sentences, the following entities are extracted 
v1 = BRAF and v2 = CRC. Considering the aspects 
introduced in Example 1, for sentence A, we find CGE =
up, CCS = progression and GCI = causality, 
leading to the signature type s((up, progression,
causality)) = oncogene. On the other hand, the 
aspect values of sentence B are CGE = up, CCS =
progression and GCI = correlation, leading to 
the signature type s((up, progression,
correlation)) = biomarker.

From Example 2, we see that different sentences may lead 
to different signature types. In the scientific discourse, it is 
not surprising that there are different viewpoints and that 
various studies can lead to different conclusions—even in con-
tradiction with each other. Hence, we need to consider this 
potential uncertainty when facts are extracted from the lit-
erature. The CORE system models this inherent uncertainty 
by assigning the likelihood of being true to each aspect value. 
This probability is based on the evidence we can extract from 
the literature. Given a set of sentences concerning the same 
two entities, the more an aspect value is consistent in the set, 
the higher the probability for that value to be true.

Definition 5. (aspect–probability set) Given an aspect 
Ai = {aj}m

j=1 such that each aspect value aj carries a 
likelihood Pr(aj), we call APi = {(aj,Pr(aj))}m

j=1 the 
aspect–probability set of Ai.

Definition 6. (multi-aspect function) Let G = (V,E) be 
a directed graph and 𝒜𝒫 = {APi}n

i=1 a set of aspect–
probability sets. We define 𝜙 : E → ∏n

i=1 APi;𝜙(e) ↦
({(a1j,Pr(a1j))}

|A1|
j=1 ,… ,{(anj,Pr(anj))}

|An|
j=1 ) as the multi-

aspect function that, given an edge, returns the 
n-tuple of aspect–probability sets.

Thus, for each pair of target entities, CORE computes the 
probabilities for all the aspect values and combines them into 
tuples of aspect–probability sets—i.e. a probability distribu-
tion over multi-aspect relationships. Sentences serve as sup-
porting or contradicting evidence that strengthens or weakens 
the likelihood of a fact.

Architecture
Figure 1 gives an overview of the CORE architecture, depict-
ing modules and processes, and Figure 2 zooms into it provid-
ing further details. The system acquires text from the literature 
and processes and normalizes it to obtain sentences, from 
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Figure 1. Overview of the CORE architecture. The system consists of five 
main modules and three processes. The modules represent the data 
acquisition and NERD components (1), the manual annotation activities 
(2), the training of the RE models (3), the subsequent automatic 
annotation (4), and the KB population (5). The processes reflect the 
different workflows: bootstrapping (orange) sets up the KBC process via 
expert involvement; deployment (blue) scales it through automated RE 
methods; and active learning (purple) allows refining the process through 
subsequent iterations.

which a NERD component detects and annotates the entity 
pairs (Module 1). These entity-annotated sentences undergo 
two different processes: bootstrapping and deployment. In the 
bootstrapping workflow, experts manually annotate multi-
aspect relationships between the entities (Module 2), produc-
ing a set of ‘relation-annotated sentences’ used to train RE 
methods (Module 3) and to populate the KB (Module 5).

In the deployment workflow, the automatic annotations 
expressing multi-aspect relationships between entities are pro-
vided by the RE methods (Module 4) previously trained in the 
bootstrapping phase. Then, in the last module (Module 5), 
relation-annotated sentences are grouped by entity pairs and 
used to generate facts to further populate the KB. Module 
5 is composed of (i) a knowledge enrichment component 
computing the probabilities for all the aspect values and com-
bining them into tuples of aspect–probability sets and (ii) a 
reliability testing component that uses these probabilities to 
perform multiple tests to tag the facts as ‘reliable’ or ‘unreli-
able’. Only the facts tagged as ‘reliable’ are used to populate 
the KB. When the deployment workflow is complete, ‘unre-
liable’ facts are ranked by ascending reliability score and the 
top-k automatically annotated sentences associated with them 
are reannotated by experts. This process triggers an active 
learning workflow that reinforces the RE methods. 

Versioning
The active learning workflow makes CORE suitable to iter-
ative KB versioning. We define a KB version as the graph 
Gj = (Vj,Ej) obtained after the jth iteration of the bootstrap 
and deployment workflows. Once the jth version of the KB has 
been deployed, the active learning workflow starts by gener-
ating the batch of unreliable sentences for bootstrapping the 
jth + 1 version of the KB. The unreliable sentences are manu-
ally annotated and used to increase the size of the datasets to 
retrain the RE methods from scratch, which then generate a 
new set of automatic annotations to be included in the jth + 1
KB version. Hence, once the bootstrap and deployment work-
flows are completed, the jth + 1 version of the KB is rebuilt 
from scratch and comprises all the available annotations.

NERD
CORE recognizes gene and cancer entities from text and 
links them to relevant and authoritative KBs. In our

Figure 2. Detailed view of the CORE architecture. In module (1), CORE 
acquires text from biomedical literature and then performs NERD to 
generate entity-annotated sentences. These sentences are then manually 
annotated by experts in module (2) to produce relation-annotated 
sentences, which are used to generate the datasets for training RE 
methods in module (3). Once trained, in module (4), the RE methods are 
deployed over entity-annotated sentences to automatically generate 
relation-annotated sentences. Finally, in module (5), relation-annotated 
sentences undergo a knowledge enrichment component, which 
generates facts, and a reliability testing component, which tags facts as 
‘reliable’ or ‘unreliable’. Facts tagged as ‘reliable’ are used to populate the 
KB, whereas ‘unreliable’ facts are returned to experts for re-annotation.

setting, gene entities are linked to the National Center 
for Biotechnology Information (NCBI) Gene database (56), 
whereas cancer entities are linked to the Unified Medical 
Language System (UMLS) (57). The choice of UMLS as 
the reference KB for cancer aims to maximize the inter-
operability of the CORE system with different existing 
biomedical resources, such as DisGeNET, BioXpress and
OncoMX.

As NERD component, CORE integrates the PubTator 
system (58–60). Given biomedical text, PubTator provides 
automated annotations from state-of-the-art text mining sys-
tems for genes/proteins, genetic variants, diseases, chemicals, 
species and cell lines. In particular, PubTator normalizes anno-
tated genes to NCBI Gene identifiers and annotated diseases 
to MeSH (61) identifiers. However, the CORE system requires 
UMLS identifiers for diseases. Therefore, a mapping process 
normalizes MeSH identifiers to UMLS Concept Unique Iden-
tifiers (CUIs). Then, to restrict to cancer, CORE only keeps 
UMLS CUIs that belong to the neoplastic process’ semantic 
type. Once gene and cancer entities have been extracted and 
linked to the reference KBs, CORE splits biomedical text into 
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sentences and keeps only those sentences containing gene–
cancer pairs. When a sentence contains multiple gene–cancer 
pairs, CORE returns separate entity-annotated sentences for 
each pair.

Manual annotation
CORE involves experts to manually annotate some sen-
tences with multi-aspect relationships about gene expression–
cancer associations. For annotation, CORE adopts a com-
mon and shared schema in the biomedical domain (e.g. 
CoMAGC (25) and OncoSearch (26)), where experts are 
required to annotate sentences with three different aspects: 
CGE, CCS and GCI. CGE represents the change of the 
gene expression level, CCS represents the change of the 
cancer status and GCI indicates the interaction occurring 
between CGE and CCS aspects. Each aspect can assume dif-
ferent values: Dom(CGE) = {up,down,notinf}; Dom(CCS) 
= {progression, regression, notinf}; Dom(GCI) =
{causality, correlation, notinf}.

Even though a huge amount of sentences contains gene–
cancer pairs in the biomedical literature, only a small fraction 
actually describes gene expression–cancer associations. It is 
therefore essential to have a tool capable of limiting the 
amount of noise introduced in the annotation process and 
maximizing sentence utility. In this regard, CORE requires the 
annotation of an additional aspect, the gene–cancer context 
(GCC). GCC indicates the coarse-grained association between 
gene and cancer and serves as a filter that helps differenti-
ating between gene–cancer associations related to changes in 
the gene expression levels and those encompassing other types 
of gene–cancer relationships. To this end, GCC has the fol-
lowing domain: Dom(GCC) = {expression,other}. The 
expression value indicates that an altered gene expression 
is associated with cancer, whereas the other value repre-
sents any other gene–cancer association(note that other can 
be broken down into different and finer values, thus leav-
ing room for the integration of different types of gene–cancer 
associations in the CORE system.)—including the absence of 
association. Thus, the GCC aspect assesses the sentence utility 
in context, because it is a filter limiting manual and auto-
matic analysis of sentences containing gene–cancer pairs not 
inherent to gene expression–cancer associations.

Based on the annotation schema presented earlier, domain 
experts perform multi-aspect manual annotations between 
gene–cancer pairs and return relation-annotated sentences 
(Module 2). Depending on the considered workflow, the 
sentences to be annotated come from different modules at 
different stages. At the beginning of bootstrapping, (entity-
annotated) sentences come from Module 1 as the output of 
the NERD component. After active learning, (unreliable) sen-
tences come from Module 5 due to the reliability testing. In 
both cases, any errors associated with the NERD compo-
nent are corrected too. For training RE methods (Module 3), 
the CORE system employs the complete set of relation-
annotated sentences, whereas to populate the KB (Module 5), 
CORE keeps only the sentences with GCC = expression. 
The sentences annotated with CGE = notinf are excluded 
to limit noise injection, because CGE is the main aspect gene 
expression–cancer associations driver (25).

Relation extraction
CORE’s RE methods are trained to automatically annotate 
multi-aspect relationships on sentences. Once trained, the RE 
methods are applied on new, unseen sentences to generate 
knowledge and thus update the KB.

For each aspect to be annotated, a different RE method 
is trained (Module 3) and deployed (Module 4). Together, 
different aspect-based annotations compose the multi-aspect 
relationship. Although simple, this approach reflects the trans-
parent and modular architecture of the CORE system, where 
different components can be easily plugged in and plugged 
out since every RE method can be retrained—or changed—
without affecting others.

The RE methods serve two purposes: classify sentence util-
ity and extract gene expression–cancer aspects. Every RE 
method presents the same architecture but addresses a dif-
ferent aspect. As the underlying ML model, all RE methods 
adopt SciBERT (62), a pretrained language model based 
on BERT (63). SciBERT addresses the lack of high-quality, 
large-scale labeled scientific data by pretraining on scientific 
papers from Semantic Scholar (64). On top of it, a linear 
layer takes SciBERT pooled output. Predictions are scores in 
[0,1] for target values. The higher the score for an aspect 
value, the more the RE method believes the sentence expresses 
that particular value. We formally define prediction scores as
follows.

Definition 7. (score function) Let Ai be an aspect, aj
one of its values and T a set of sentences. We define 
score : Ai × T → ℝ[0,1]; score(aj, t) ↦ r as the score 
function that given a sentence t returns how close the 
aspect value aj is to the truth.

Every RE method instantiates the score function tailored 
for its aspect extraction task. A RE method returns a spe-
cific sentence-aspect score always in the range of [0,1] of real 
numbers.

Remark 1. Given a sentence t and an aspect 
Ai = {aj}m

j=1, then ∑aj∈Ai
score(aj, t) = 1. Prediction 

scores for an aspect Ai given a sentence t are a 
probability distribution over the aspect values aj.

Thus, given an entity-annotated sentence (Module 1), 
CORE first masks gene and cancer entities with special tokens 
to avoid bias and then applies RE methods to extract CGE, 
CCS, GCI and GCC aspects. GCC extraction serves to assess 
sentence utility, while CGE, CCS and GCI extraction to com-
pose multi-aspect relationships. For each aspect, the CORE 
system keeps the value associated with the highest score. For 
manual annotation, the scores are set to 1 if the aspect value 
is present and 0 otherwise.

Afterward, relation-annotated sentences where the
extracted GCC value is expression are kept, whereas those 
with GCC = other are discarded. As in manual annota-
tion, sentences with CGE = notinf are also filtered out. The 
retained set of automatic, relation-annotated sentences is used 
to populate the KB (Module 5).
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Knowledge enrichment
The relation-annotated sentences obtained from manual 
annotation (Module 2) and RE deployment (Module 4) pass 
through a knowledge enrichment component, which groups 
annotated sentences by gene–cancer pairs and generates facts. 
However, for a given gene–cancer pair, different sentences can 
have different multi-aspect annotations. This situation occurs 
because, in the literature, different studies and viewpoints can 
lead to different conclusions. To address this intrinsic uncer-
tainty, the CORE system assigns to each aspect a likelihood 
to be true.

Definition 8. (aspect value likelihood) Let (v1,v2) be a 
pair of entities, T(v1,v2) the set of sentences annotated 
with both v1 and v2 and aj ∈ Ai the target aspect 
value. Then, the aspect value likelihood is 

By modeling aspect value likelihoods this way, the CORE 
system takes the beliefs of RE methods into account. The more 
the RE methods are confident about an aspect value aj over 
the others, the more its likelihood increases. Vice versa, if RE 
methods have a larger degree of uncertainty across the dif-
ferent aspect values, then the likelihood for aj also decreases 
accordingly.

Remark 2. Given a pair of entities (v1,v2), its set of 
annotated sentences T(v1,v2) and an aspect Ai, then 
∑aj∈Ai

Pr(Ai = aj ∣ (v1,v2)) = 1.

Example 3. Let us consider a gene–disease pair (v1,v2), 
its set of annotated sentences T(v1,v2) = {t1, t2, t3, t4}
and the CGE, CCS and GCI aspects. For each 
sentence, the candidate aspect value–score pairs are as 
follows:

t1 : CGE (up, 0.7), CCS(progression, 0.6), GCI(notinf, 
0.9)

t2 : CGE (down, 0.8), CCS (regression, 0.9), GCI 
(causality, 0.6),

t3 : CGE (notinf, 0.8), CCS (progression, 0.9),
GCI(notinf, 0.9),

t4 : CGE (up, 1.0), CCS (regression, 1.0), GCI 
(observation, 1.0).

First, sentence t3 is filtered out since CGE = notinf. 
Hence, the sentences used for computation are t1, t2 and 
t4. Then, following Definition 8, CGE value likelihoods 
are computed as Pr(up) = (0.7 + 0.0 + 1.0)/(0.7 + 0.8 +
1.0) = 0.68 and Pr(down) =(0.0 + 0.8 + 0.0)/(0.7 + 0.8 +
1.0) = 0.32, leading to the aspect–probability set APCGE
= {(up, 0.68), (down}, 0.32)}. Similarly, CCS and GCI 
lead to aspect–probability sets APCCS =
{(progression, 0.24), (regression, 0.76), 

(notinf, 0.00)} and APGCI = {(observation, 0.40), 
(causality, 0.24), (notinf, 0.36)}. Thus, given the 
fact (v1,e,v2) obtained from the gene–disease pair 
(v1,v2), we have that 𝜙(e) = (APCGE,APCCS,APGCI)
consists of the aspect–probability sets defined earlier.

For each fact, CORE combines CGE, CCS and GCI aspects 
into the tuple of aspect–probability sets, which represents a 
probability distribution over multi-aspect relationships and 
performs reliability tests to decide if the fact is reliable enough 
to populate the KB.

Reliability testing
The facts generated through the knowledge enrichment 
component undergo a set of reliability tests, which are 
used by CORE to identify those facts that are reliable 
enough to populate the KB. These reliability tests are 
based on aspect–probability sets and follow the inference 
rules defined in (25, 26) and reported in Table 2 to map 
multi-aspect relationships to signature types. Indeed, multi-
aspect relationships can be used to infer the prospective 
roles of genes in cancer and to classify genes into three 
mutually exclusive classes according to the inferred role: 
oncogene, tumor suppressor gene and biomarker
(as in (25, 26), a gene classified as biomarker repre-
sents a gene that exhibits altered expression levels in can-
cer, which, however, is not (yet) identified as oncogene or 
tumor suppressor gene). For instance, an oncogene
can be inferred from (up,progression,causality) or 
(down, regression, causality) multi-aspect relation-
ships (Rules 1 and 3 of Table 2). These mutually 
exclusive classes represent the signature set S and are 
associated with edges of the KB through the tagging
function 𝜎(⋅).

Thus, based on aspect–probability sets and inference rules, 
CORE performs a two-stage reliability test that first verifies 
that facts have sufficient evidence and then assesses the degree 
of contradicting evidence. The two stages are divided into 
sufficiency and consistency checks.

Given a fact (v1,e,v2), a sufficiency check monitors whether 
the likelihood of not-informative aspect values is large enough 
to undermine the reliability of the fact. CORE applies 
the sufficiency check to CCS = notinf and GCI = notinf
aspect values. Hence, a fact fails the sufficiency check 
and therefore is deemed ‘unreliable’ if Pr(CCS = notinf) >
𝛼 ∨ Pr(GCI = notinf) > 𝛼, where 𝛼 is a fixed system
threshold.

The facts that pass the sufficiency check are further 
inspected for consistency. Given a tuple of aspect–probability 
sets, associated with a fact (v1,e,v2) through 𝜙(e), the consis-
tency check verifies that mutually exclusive signature types are 
not similarly probable.

Definition 9. (signature type likelihood) Let (v1,e,v2)
be a fact and S the set of mutually exclusive signature 
types. Then, the signature type likelihood is defined as 
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where Pr(aij) is the aspect value likelihood and 𝜎(⋅)
and s(⋅) are the tagging and signature functions, 
respectively.

Since gene expression–cancer aspects can be treated as 
independent events (25, 26), the signature type likelihood can 
be computed for the gene classes. For instance, according to 
Rules 1 and 3 from Table 2, the likelihood of the oncogene
class is 

Pr(oncogene) =Pr(up) ⋅ Pr(progression)⋅

Pr(causality) + Pr(down)⋅

Pr(regression) ⋅ Pr(causality).

Given that gene classes are mutually exclusive, the consis-
tency check verifies whether the class likelihoods are too close 
to each other. Indeed, similar likelihoods imply that a fact 
is supported by contradictory evidence, thus showing some 
inconsistency. Vice versa, a large difference between likeli-
hoods suggests a strong tendency towards a specific gene class, 
and therefore a more consistent support for the fact.

Hence, for a target fact (v1,e,v2), CORE takes gene classes 
type-1 and type-2 with largest likelihoods and verifies 
that the condition (Pr(type-1) − Pr(type-2)) > 𝛽 is satisfied, 
where 𝛽 is a fixed system threshold. A fact that fails the condi-
tion is therefore considered ‘unreliable’. In other words, when 
no gene class has a likelihood large enough to overcome the 
others by a margin of 𝛽, CORE tags the fact as ‘unreliable’. 
Note that the consistency check admits that only one gene 
class satisfies the condition.

Example 4. Let us consider two facts f1 = (v1,e1,v2)
and f2 = (v3,e2,v4). The not-informative likelihoods 
associated with each fact are as follows:

f1 : Pr(CCS = notinf) = 0.1,Pr(GCI = notinf) = 0.3,
f2 : Pr(CCS = notinf) = 0.6,Pr(GCI = notinf) = 0.5.

The signature type likelihoods associated with each 
fact, and sorted in decreasing order of probability, are as 
follows:

f1 : Pr(oncogene) = 0.7, Pr(tsg) = 0.2, Pr(biomarker) =
0.1,

f2 : Pr(oncogene) = 0.5, Pr(tsg) = 0.4, Pr(biomarker) =
0.1.

Then, let us set the sufficiency threshold 𝛼to 0.7 and 
the consistency threshold 𝛽to 0.4. In this scenario, both 
f 1 and f 2 pass the sufficiency check, as Pr(CCS =
notinf) and Pr(GCI = notinf) are lower than 𝛼 for 
both facts. On the other hand, only f 1 passes the 
consistency check, since none of the signature type 
likelihoods of f 2 are large enough to overcome the 
others by a margin of 𝛽. In this regard, for f 1, we have 
Pr(oncogene) − Pr(tsg) > 𝛽, which makes oncogene
the candidate gene class for the fact. Conversely, for f 2, 
we have Pr(oncogene) − Pr(tsg) < 𝛽, which provides 
no candidate gene class for the fact. Therefore, f 1 is 
tagged as ‘reliable’ and f 2 as ‘unreliable’.

The facts that pass both sufficiency and consistency checks 
are tagged as ‘reliable’ and used to populate the KB. Prior to 

population, the edges of ‘reliable’ facts are labeled through 
the tagging function 𝜎(⋅) with the gene class having the high-
est likelihood. Note that we do not claim that gene classes are 
definitive. Rather, gene classes—and supporting sentences—
should be treated as complementary, textual evidence that 
strengthens the hypotheses on the expected roles of genes in 
cancer obtained through experimental data.

Active learning
The facts deemed as ‘unreliable’ by the reliability testing 
component (Module 5) are taken over by the active learn-
ing process, which ranks them by ascending reliability score 
and returns the top-k automatically annotated sentences to 
domain experts for annotation.

Definition 10. (reliability score) Let (v1,e,v2) be a fact, 
{Ai}l

i=1 a subset of the aspects associated with e and S
the set of signature types. Then, by taking a specific 
value aij for each aspect Ai of the subset, the reliability 
score is computed as 

where H(S) is the entropy of the signature set S, 
computed as 

In this work, we compute the reliability score by consider-
ing the subset of CCS and GCI aspects and by taking their not-
informative values {CCS = notinf,GCI = notinf}. Once 
computed, CORE uses the reliability score to perform uncer-
tainty sampling (65). In other words, CORE ranks ‘unreliable’ 
facts by ascending order of reliability score. Then, the top-
k automatically annotated sentences associated with these 
facts are returned to domain experts for manual annotation 
(Module 2).

Implementation and experiments
We use CORE to build a KB for gene expression–cancer 
associations. To this end, we conducted comprehensive exper-
iments to quantify the extracted knowledge and evaluate the 
RE methods used to build the KB. In addition, we performed 
a KB reconstruction task against the state-of-the-art showing 
CORE effectiveness.

Knowledge base creation
Data processing. We use different resources to build the 
KB, which increase with each subsequent iteration of the 
KB construction process. Table 3 reports statistics for the 
resources used to build each KB version. In the first itera-
tion (KB0), we only consider manually annotated data coming 
from CoMAGC, OncoSearch and BioXpress. We revised these 
annotations to make them compliant with the annotation 
schema presented in Section (Manual annotation).

Then, in the second iteration (KB1), we introduce 
DisGeNET data, on which the CORE system deploys 
the RE methods. DisGeNET collects data on differ-
ent ‘coarse-grained’ gene-disease associations from several 
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Table 3. Raw statistics for the KB versions. Rows represent the number 
of raw instances considered to build the KB.

KB0 KB1 KB2 KB3

Manual CoMAGC 
(revised)

821 821 821 821

OncoSearch 
(revised)

157 157 157 157

BioXpress 
(revised)

74 74 74 74

DisGeNET 
(batch 1)

– – 250 250

DisGeNET 
(batch 2)

– – – 249

Automatic DisGeNET 
(batch 1)

– 184,859 184,609 184,609

DisGeNET 
(batch 2)

– – 184,858 184,609

PubMed 
(citing 
papers)

– – – 2,841,096

Total 1,052 185,911 370,769 3,211,865

resources and covers most human diseases. Regarding gene 
expression–cancer associations, DisGeNET contains auto-
matically extracted data that have been identified from the 
literature using text-mining techniques (28, 66, 67). For each 
gene–disease association, DisGeNET provides the publica-
tion(s) supporting the association, a representative sentence 
from each publication, the original source, as well as infor-
mation on the gene and disease involved in the association. 
Thus, sentences within DisGeNET can be used as a high-
quality starting point from which multi-aspect relationships 
can be extracted.

After the construction of KB1, the active learning pro-
cess ranks ‘unreliable’ facts and returns the top-k sentences 
for manual annotation. This new set of manually annotated 
sentences—together with a second batch from DisGeNET—
are added to previously used data and employed to build KB2. 
In the last iteration (KB3), we collect from PubMed the articles 
citing those stored within KB2. Then, the CORE system relies 
on the NERD component to extract gene and cancer entities 
from titles and abstract sentences and deploys RE methods on 
them. Finally, PubMed and top-k ‘unreliable’ sentences from 
KB2 are integrated into KB3 construction.

Manual annotation. The manual annotation process has 
been carried out by a clinical expert. The annotator has been 
given the target sentence to annotate/validate, together with 
the corresponding PubMed article from which it has been 
extracted—from either the title or the abstract.

System parameters. The parameters required by CORE are 
the sufficiency and consistency thresholds 𝛼 and 𝛽 and the 
number k of sentences to be returned for manual annotation 
during active learning. Sufficiency and consistency thresh-
olds regulate the degree of reliability of the facts in the KB. 
A low sufficiency combined with a high consistency thresh-
old leads to fewer facts but with a high level of reliability. 
Empirically, we set 𝛼 = 0.7 and 𝛽 = 0.4. We set k = 250, mean-
ing that 250 sentences are reannotated after each iteration. 
Note that system parameters can be adjusted as the KB size
increases.

KB statistics. From the statistics reported in Table 4, we 
draw some considerations. First, we can see that the ratio 

Table 4. Partition, absolute and conditional statistics for KB.

KB0 KB1 KB2 KB3

Partition Manual 655 585 605 592
Automatic – 96 531 95 282 435 283

Absolute Sentence 655 97 116 95 887 435 875
Article 411 69 462 65 236 161 449
Gene 329 9,483 9981 21 005
Cancer 98 1479 1554 1665
Fact 512 71 554 89 999 153 016

Conditional Sentence/article 1.59 1.40 1.47 2.70
Sentence/fact 1.28 1.67 1.56 3.10
Article/fact 1.09 1.67 1.56 2.10

Table 5. Reduction statistics for unreliable facts. For each KB version 
(rows), we report the number of unreliable facts present in that version 
that are also found in subsequent versions (columns).

KB0 KB1 KB2 KB3

Insufficient KB0 10 5 5 5
KB1 – 9055 2308 1135
KB2 – – 4515 2452

Inconsistent KB0 22 18 15 17
KB1 – 6135 3837 3704
KB2 – – 11 380 7786

Table 6. Signature type statistics for each KB version.

Signature type KB0 KB1 KB2 KB3

Biomarker 390 59,147 69,409 105,089
Oncogene 87 8,833 13,501 35,520
Tumor Suppressor Gene 35 3,574 7,089 12,407

between the sentences stored in the KB and the input ones 
decreases at each iteration. From the first iteration, CORE 
uses 62% of the input sentences to build KB0, and we move 
to 52% to build KB1, 26% for KB2 and only 14% for KB3. 
Such a decrease reflects the use of reliability tests and active 
learning, which makes the system more selective and accurate. 
In particular, active learning leads the system to refine the RE 
methods at each iteration, thus reducing false positives as well 
as ‘unreliable’ facts as shown in Table 5, which presents the 
reduction statistics of ‘unreliable’ facts. We see that the num-
ber of facts deemed as ‘unreliable’ in one iteration decreases in 
the next ones, confirming the effectiveness of active learning.

Second, the large number of different genes and cancers in 
KB3 highlights the scalability of the approach. In this regard, 
KB3 contains 21 005 genes, which cover 70% of the 30 
000 estimated genes in the human genome.2 On the other 
hand, through the integration of DisGeNET data, KBs 1–3 
contain most of the (known) cancer types involved in gene 
expression–cancer associations. Together, this large number of 
genes and cancer types leads to more than 150 000 ‘reliable’ 
facts. Table 6 presents the distribution of these facts according 
to the corresponding signature type. 

Finally, KB3 represents one of the largest literature-derived 
KBs with fine-grained facts about gene expression–cancer 
associations. Compared to KB3, BioXpress and OncoMX—
both relying on DEXTER text-mined results—contain less 

2https://www.genome.gov/human-genome-project/
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Table 7. Statistics of the aspect extraction datasets. We provide the 
percentage increase from one version to the next

Aspect Value DS0 DS1 DS2

CGE up 524 604 (+15%) 679 (+12%)
down 219 263 (+20%) 311 (+18%)
notinf 309 430 (+39%) 550 (+28%)

CCS progression 605 719 (+19%) 829 (+15%)
regression 134 147 (+10%) 162 (+10%)
notinf 313 431 (+38%) 549 (+27%)

GCI causality 189 227 (+20%) 266 (+17%)
observation 548 634 (+16%) 719 (+13%)
notinf 315 436 (+38%) 555 (+27%)

Total 1,052 1,297 (+23%) 1,540 (+19%)

literature-derived data. Specifically, BioXpress integrates 
DEXTER gene expression–cancer associations for 2024 genes 
in lung cancer, 115 glycosyltransferases in 62 cancers and 
826 microRNAs in 171 cancers (24). On the other hand, 
OncoMX integrates 22 904 gene expression–cancer associa-
tions between 5524 genes/microRNAs and 272 cancer types, 
extracted by DEXTER from 36 196 sentences in 25 860 
PubMed articles. Although larger, OncoMX is still an order 
of magnitude smaller than KB3. Besides, both BioXpress and 
OncoMX only report CGE values between cancer and normal 
samples, thus providing less comprehensive information than 
CORE to model gene expression–cancer associations. A dif-
ferent situation occurs with OncoSearch, which contains 451 
798 sentences expressing 7555 genes and 1717 cancer types, 
leading to 2295 oncogenes, 1549 tumor suppressor genes 
and 6779 biomarkers. Compared to OncoSearch, KB3 con-
tains less sentences and cancer types. However, OncoSearch 
does not perform reliability tests and therefore ingests any 
annotated sentence. If we also consider the facts deemed as 
‘unreliable’ by CORE when building KB3, then the num-
ber of sentences and cancer types becomes 1 037 845 and 
1767, respectively. Thus, KB3 integrates a smaller number of 
sentences and cancer types to seek for a higher quality.

Relation extraction evaluation
Datasets. We evaluate the effectiveness of the CGE, CCS and 
GCI extraction methods using three incremental sets of man-
ually annotated data. Table 7 reports the statistics of these 
aspect extraction datasets. The first dataset (DS0) derives 
from the seed batch of manually annotated data used to build 
KB0. The second (DS1) and third (DS2) ones integrate addi-
tional data coming from the subsequent sets of 250 sentences 
returned by the active learning process. DS0 contains 1052 
annotated sentences, which increased by 23% in DS1 and a 
further 19% in DS2.

Regarding the GCC extraction method, which serves as 
a sentence utility binary classifier, we use DisGeNET to cre-
ate a large-scale semi-automatically annotated dataset. Similar 
to (68), we employ automatically extracted data from Dis-
GeNET to build training and validation sets while relying on 
manually curated data for the test set. Table 8 reports the 
statistics for the sentence utility classifier dataset. For train-
ing and validation, DisGeNET sentences conveying a gene 
expression–cancer association were labeled as expression
and those conveying any other type of association as other. 
For test, DS2 sentences were used as expression candidates 
and manually curated sentences from DisGeNET as other.

Table 8. Statistics of the sentence utility classifier dataset.

Class Training Validation Test

expression 18,555 6,185 1,540
other 18,876 6,292 825

Table 9. Aspect extraction performances

Dataset Aspect Accuracy Precision Recall F1

DS0 CGE 0.8812 0.8870 0.8812 0.8792
CCS 0.8593 0.8650 0.8593 0.8600
GCI 0.8194 0.8305 0.8194 0.8212

DS1 CGE 0.8543 0.8574 0.8543 0.8526
CCS 0.8404 0.8436 0.8404 0.8400
GCI 0.8150 0.8269 0.8150 0.8142

DS2 CGE 0.8760 0.8813 0.8760 0.8746
CCS 0.8481 0.8515 0.8481 0.8478
GCI 0.8266 0.8314 0.8266 0.8259

We create a unique dataset for the sentence utility classifier 
as the method is only applied to PubMed sentences during 
KB3 construction. PubMed is very general, and most of the 
sentences are not about gene expression–cancer associations, 
so the sentence utility classifier is critical for the CORE extrac-
tion process. Conversely, the sentence utility classifier is not 
needed on DisGeNET sentences because they are of high qual-
ity, and a filtering process has already taken place before their 
integration within it.

Set-up. For training, we set the batch size to 16 and the 
learning rate to 2e-5 with linear warm-up followed by lin-
ear decay (63), as suggested in (62). The CGE, CCS and 
GCI extraction methods perform multi-class classification and 
are trained using a standard cross entropy loss function. The 
sentence utility classifier performs binary classification and 
employs a binary cross-entropy loss.

We perform 10-fold cross-validation to evaluate CGE, CCS 
and GCI methods. For each iteration, we train the RE meth-
ods for 10 epochs, choose the best epoch on a validation set 
consisting of 25% of the training folds and report the corre-
sponding results for the test fold. Instead, given the large size 
of the GCC extraction dataset, we train the sentence utility 
classifier for five epochs, pick the best epoch on the validation 
set and report the results on the test set.

Results. Table 9 reports the average performances of the 
CGE, CCS and GCI extraction methods on the different 
dataset versions.

We can see that all the three methods perform well on 
the task—above 0.80 for each measure—with peak perfor-
mances on CGE and slightly lower performances on GCI. 
These results underline the differences between aspects, where 
CGE is most explicit in sentences—and therefore easier to 
extract—whereas GCI is less evident—and therefore more 
difficult to predict. CCS extraction is in between.

This experiment shows the effectiveness of the RE meth-
ods and their stability as they do not regress as the dataset 
size increases. In this regard, we recall that RE methods are 
retrained from scratch at each iteration and not fine-tuned 
with new data from the active learning process. Thus, such 
consistent performances across dataset versions highlight the 
robustness and reliability of the RE methods.
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Table 10. CORE system performance on the BioXpress reconstruction 
task. We also report DEXTER performance on DS2.

Dataset Method Accuracy Precision Recall F1

BioXpress CORE0 0.9544 0.9601 0.9544 0.9572
CORE1 0.9703 0.9831 0.9703 0.9766
CORE2 0.9706 0.9827 0.9706 0.9766

DS2 DEXTER 0.3256 0.6034 0.3256 0.2882

Regarding GCC extraction, the sentence utility classifier 
achieves an accuracy of 0.8825 and a precision, a recall 
and an F1 value of 0.8824, 0.8825 and 0.8803, respectively. 
The results highlight the viability of training coarse-grained 
RE methods using automatically annotated data from Dis-
GeNET (68) and show the effectiveness of the trained method 
on a manual test set. Thus, the sentence utility classifier is reli-
able enough to be used as filter on new and heterogeneous 
sentences gathered from PubMed.

Knowledge base reconstruction
Setup. We further evaluate the effectiveness of the CORE sys-
tem on a KB reconstruction task, in which we hold out a 
portion of an existing KB with associated sentences and we 
assess CORE ability to recover it. To this end, we hold out 
from BioXpress the set of 9636 sentences annotated by DEX-
TER (SoTA for gene expression–cancer annotations), and we 
evaluate the CORE system on them. Note that such sentences 
are not part of those used to train the CORE RE methods. 
Given that BioXpress only reports CGE values between cancer 
and normal samples, we restrict our evaluation to CGE extrac-
tion. As a further experiment, we also apply DEXTER to 
DS2 to evaluate its ability to generalize to heterogeneous sen-
tences, whose syntactic structure can differ from its predefined 
patterns.

Results. Table 10 reports the CORE system performance 
on the BioXpress reconstruction task after each (re-)train-
ing of the RE methods, as well as DEXTER performance 
on DS2. We can see that each CORE version consistently 
achieves performances above 0.95 for each measure. In par-
ticular, CORE1 improves over CORE0 by 2% and reaches 
a performance plateau, where CORE2 also stabilizes with 
an accuracy of 0.9706 and a precision, a recall and an F1 
value equal to 0.9827, 0.9706 and 0.9766, respectively. The 
results show the effectiveness of the CORE system in recover-
ing BioXpress using a limited amount of manual annotations 
to train the RE methods. On the other hand, the poor per-
formance of DEXTER on DS2 highlights a lack of flexibility 
that hampers its applicability to heterogeneous sentences. To 
further support this intuition, we observe that for DEXTER, 
recall presents the worst performance (0.3256) if compared to 
precision (0.6034). This underlines DEXTER’s expert system 
nature based on pattern-matching, which, although precise, 
fails to generalize beyond its set of predefined patterns.

Knowledge base exploration
We perform some exploratory queries to analyse the con-
tents of the largest KB produced by CORE, that is KB3. 
The SPARQL queries used to explore KB3 can be found in 
Appendix A.

Genes most involved in cancer diseases
Figure 3 illustrates the top ten oncogenes, biomarkers and 
tumor suppressor genes associated with cancer. Among 
the oncogenes, AKT1 emerges as the predominant gene 
implicated in cancer diseases within KB3. AKT1 exhibits 
widespread expression in various tissues (69, 70). Other 
known oncogenes are MAPK1 and MAPK3, frequently 
involved in oncogenesis, tumor progression and drug resis-
tance (71) and STAT3 (72). Regarding biomarkers, there 
are several known proto-oncogenes such as ERBB2 (73), 
EGFR (74) and BCL2 (75). Proto-oncogenes fit our defini-
tion of biomarkers, i.e. genes that show altered expression 
levels in cancer but do not (yet) have enough evidence to 
be identified as oncogenes or tumor suppressor genes. A 
different situation occurs with TP53, which presents an inter-
esting scenario as it is a biomarker and a tumor suppressor 
gene for many diseases. Over the years, the scientific under-
standing of TP53 has evolved, initially classifying it as an 
oncogene (76), then recognizing it as a tumor suppressor (77) 
and, more recently, under certain conditions, acknowledging 
its re-emergence as an oncogene (78). Thus, thanks to its prob-
abilistic, fact-centric and evidence-based approach, the CORE 
system can capture such a dynamic scenario—which is proper 
for scientific discourse. 

Most discussed genes, cancer diseases and facts
Figure 4 presents the genes, diseases and facts that have gar-
nered the most attention in the scientific literature. Naturally, 
the most discussed genes align with the ones most involved 
in cancer diseases. The most discussed topics concerning can-
cer predominantly revolve around breast, colorectal, prostate 
and lung cancer types. This outcome is fitting, as these cancer 
types are the four most common cancer types worldwide.3 
As a consequence, the most discussed facts pertain to gene 
expression–cancer associations involving the aforementioned 
genes and diseases.

Longest-discussed fact in the literature
Figure 5 showcases the temporal progression of publications 
concerning the fact most extensively discussed in KB3 (i.e. 
ERBB2, BIOMARKER, mammary neoplasms). ERBB2 is a 
known proto-oncogene that plays an important role in human 
malignancies and is amplified or overexpressed in 30% of 
human breast cancers (73). Therefore, the relevance of ERBB2 
in breast cancer well motivates its prominence within the 
scientific discourse. 

Search platform
The KB generated by CORE can also be accessed via 
COREKB (30), an intuitive and easy-to-use search platform 
for searching scientific facts over gene expression–cancer asso-
ciations. COREKB allows users to search for gene–cancer 
associations and entities using free-text or structured search 
queries. The interface provides several features, including 
autocomplete facilities, entity cards summarizing the major 
gene–cancer relationships and entity landing pages, and users 
can easily switch between free-text and structured search 
interfaces. The system also offers a simple toggle button to 

3https://www.wcrf.org/cancer-trends/worldwide-cancer-data/
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Figure 3. The ten most involved genes (and their roles) in cancer diseases. From left to right, the figures present the ten most involved oncogenes, 
biomarkers and tumor suppressor genes, respectively. AKT1 is the most prominent oncogene, with wide expression in various tissues. Other known 
oncogenes include MAPK1, MAPK3 and STAT3. Proto-oncogenes such as ERBB2, EGFR and BCL2 show altered expression levels in cancer, but lack 
sufficient evidence to be identified as oncogenes, thus fitting our definition of biomarkers. TP53 represents an interesting case, as it functions as a 
biomarker and a tumor suppressor gene for several diseases, with its classification evolving over time.

Figure 4. The ten most discussed genes, cancer diseases, and facts within the literature. The most discussed genes are those most involved in cancer 
diseases, with a focus on breast, colorectal, prostate, and lung cancer—i.e., the most common cancer types worldwide. Consequently, the most 
discussed facts refer to gene expression-cancer associations involving these specific genes and diseases.

Figure 5. Temporal progression of publications concerning the longest-discussed fact in literature: (ERBB2, BIOMARKER, Mammary Neoplasms). 
ERBB2 is a known proto-oncogene, amplified or overexpressed in around 30% of human breast cancers (73). Its relevance in breast cancer justifies the 
prominent presence of the corresponding fact in the scientific discourse.
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Figure 6. COREKB Search Engine Result Page first result for the query ‘AKT1 oncogene mammary neoplasms’. The retrieved facts are organized as 
cards providing several information concerning (A) the gene, cancer and their relationship and (B) specific information concerning the entities—i.e. gene 
and the related cancer expression—involved in the association. In addition, card (A) includes infometrics and bibliometrics information to provide further 
insights. The contents of the cards are available for download in JSON format through the dedicated download button.

include/exclude unreliable facts from the search results. The 
search results are presented as a list of cards showing the 
information concerning the scientific facts matching the user-
provided query. Card information can also be downloaded in 
JSON format via the dedicated download button. Figure 6 
shows the first result of the Search Engine Result Page for the 
query ‘AKT1 oncogene mammary neoplasms’. 

Architecture
COREKB’s architecture consists of multiple components syn-
ergically cooperating to facilitate the search and retrieval of 
scientific facts—i.e. gene expression–cancer associations sup-
ported by the scientific literature. The architecture includes a 
web-based front–end interface built with React.js and a back-
end for the business logic, Representational State Transfer 
Application Programming Interfaces and services built with 
the Python web framework Django. The system relies on 
a PostgreSQL database coupled with a Virtuoso Resource 
Description Framework triple store to memorize the KB. 
Moreover, Redis is exploited as an efficient in-memory data 
store and access broker. A search and retrieval component 
implemented in Python performs NERD on the user-provided 
queries to identify entity mentions and, in turn, perform 
a structured search on the database. To this aim, a Redis 
in-memory dictionary of entities is exploited for fast entity 
identification.

Specifically, when a user query is received, the system 
assigns a score to each entity based either on an exact match 
(if it occurs) or on the number of matching terms in the case 
of a partial match. The score is normalized based on the 
entity’s length to avoid favoring longer entities at the expense 
of shorter ones. Then, the retrieved facts are ordered accord-
ing to their scientific evidence support. In the case of multiple 

recognized entities, the system promotes gene–cancer pairs 
with the most matching associations.

Interface
The interface reports the search results by organizing them 
into cards; it provides information such as gene class, symbol, 
cancer label, supporting and conflicting sentences, associated 
publications, gene class distribution and bibliometrics. The 
fact claim is emphasized using boldface and a colored circle, 
indicating the informativeness and reliability of the fact—i.e. 
green, red and gray colors, respectively, for reliable, unreliable 
and non-informative facts. Moreover, the interface includes 
links and references to related entries in external platforms 
like NCBI and Linked Life Data.4

For each gene or cancer entity, there is a dedicated landing 
page that displays comprehensive information. The landing 
page consists of two major cards. The first card presents 
detailed information about the entity, for instance, in the 
case of a gene, it shows its symbol, full name, type, syn-
onyms, designations, last modified date, summary and gene 
class distribution for different cancer diseases. Long textual 
information can be expanded or collapsed on click for space-
saving purposes. Instead, a second card shows the sentences 
involving the entity of interest, presented in a tabular form 
with filtering and sorting features. Users can resize columns, 
hover over sentences for getting information via tooltips or 
click on sentences for a separate pop-up view.

Conclusions and future work
In this work, we presented CORE, a KBC system based on the 
combination of automated ML-based methods and domain 

4http://linkedlifedata.com
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experts. CORE presents a seamless, transparent and modular 
architecture that can be easily modified and where differ-
ent components can be replaced without affecting the others. 
Among its main features, the reliability tests and the active 
learning process make the system suited to iterative KB ver-
sioning. That is, CORE performs iterative tests that measure 
the reliability of the extracted data and return small, selected 
samples to domain experts for annotation. The high-quality 
data generated through active learning are then used to rein-
force CORE subsequent versions. We used CORE to build one 
of the largest literature-derived KBs containing fine-grained 
facts about gene expression–cancer associations. To show the 
robustness of the approach, we conducted extensive experi-
ments that highlighted the ability of CORE to scale to large 
collections of heterogeneous data with limited human anno-
tations. The KB generated by CORE can be accessed via a 
SPARQL endpoint (http://w3id.org/corekb/sparql) or through 
the COREKB search platform (https://gda.dei.unipd.it).

The CORE system is an ongoing effort carried out in 
partnership with medical centers. The expertise and insights 
of clinicians have been instrumental in developing a robust 
KBC system. Future work aims to improve the system by 
integrating advanced large language models (LLMs) as input 
sources. Robust validation mechanisms and collaboration 
with experts will be crucial to identify and ingesting reliable 
content generated by LLMs.

Acknowledgements
This work was supported by the ExaMode project as part 
of the EU H2020 program under grant agreement number 
825292. The development of the CORE system benefited from 
the valuable contribution of the medical centers and clini-
cians involved in the ExaMode project. We want to express 
our gratitude for their support and feedback, which has been 
instrumental in creating the CORE KB.

Data availability
The KB derived by CORE is available at https://zenodo.org/
record/7577127. The SPARQL endpoint for querying the KB 
can be found at http://w3id.org/corekb/sparql. The KB can 
also be accessed via COREKB at https://gda.dei.unipd.it. The 
source code is available at https://github.com/GDAMining/
core.

References
1. Manzoni,C., Kia,D.A., Vandrovcova,J. et al. (2016) Genome, tran-

scriptome and proteome: the rise of omics data and their integra-
tion in biomedical sciences. Brief. Bioinformatics, 19, 286–302.

2. Borry,P., Bentzen,H.B., Budin-Ljøsne,I. et al. (2018) The challenges 
of the expanded availability of genomic information: an agenda-
setting paper. J. Community Genet., 9, 103–116.

3. Neary,B., Zhou,J. and Qiu,P. (2021) Identifying gene expression 
patterns associated with drug-specific survival in cancer patients. 
Sci. Rep., 11, 1–12.

4. Dugger,S., Platt,A. and Goldstein,D. (2018) Drug development 
in the era of precision medicine. Nat. Rev. Drug. Discov., 17, 
183–196.

5. Li,X. and Warner,J.L. (2020) A review of precision oncol-
ogy knowledgebases for determining the clinical actionability 
of genetic variants. Front. Cell Dev. Biol., 8, 1–48.

6. Liu,F., Chen,J., Jagannatha,A., et al. (2016) Learning for biomed-
ical information extraction: methodological review of recent 
advances. CoRR, 1606.07993, 1–21. abs/1606.07993.

7. Krallinger,M., Rabal,O., Akhondi,S.A. et al. (2017) Overview 
of the BioCreative VI chemical-protein interaction track. In: Proc. 
of the sixth BioCreative challenge evaluation workshop, Bethesda, 
Maryland, USA,October 18–20, 2017.

8. Miranda,A., Mehryary,F., Luoma,J. et al. (2021) Overview 
of DrugProt BioCreative VII track: quality evaluation and large 
scale text mining of drug-gene/protein relations. In: Proc. of the 
seventh BioCreative challenge evaluation workshop, November 
8–10, 2021, Online.

9. Weikum,G., Dong,X.L., Razniewski,S., et al. (2021) Machine 
knowledge: creation and curation of comprehensive knowledge 
bases. Found. Trends Databases, 10, 108–490.

10. Wright,D., Gentile,A.L., Faux,N., et al. (2022) BioAct: biomedical 
knowledge base construction using active learning. bioRxiv.

11. Ernst,P., Siu,A. and Weikum,G. (2018) HighLife: Higher-arity 
fact harvesting. In: Proc. of the 2018 World Wide Web Confer-
ence on World Wide Web, WWW 2018. ACM, Lyon, France. 
pp. 1013–1022, 23–27 April 2018.

12. Mintz,M., Bills,S., Snow,R., et al. (2009) Distant supervision 
for relation extraction without labeled data. In: Proc. of the 47th 
Annual Meeting of the Association for Computational Linguis-
tics (ACL 2009) and the 4th International Joint Conference on 
Natural Language Processing of the AFNLP. ACL, Singapore, 
pp. 1003–1011, 2–7 August 2009.

13. Surdeanu,M., Tibshirani,J., Nallapati,R., et al. (2012) Multi-
instance multi-label learning for relation extraction. In: Proc. of 
the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, 
EMNLP-CoNLL 2012. ACL, Jeju Island, Korea. pp. 455–465, 
12–14 July 2012.

14. Settles,B. (1995) Active learning literature survey. Science, 10, 
237–304.

15. Olsson,F. (2009) A literature survey of active machine learn-
ing in the context of natural language processing. SICS Tech-
nical Report, Swedish Institute of Computer Science, 1,
1–59.

16. Angeli,G., Tibshirani,J., Wu,J., et al. (2014) Combining distant 
and partial supervision for relation extraction. In: Proc. of the 
2014 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014. ACL, Doha, Qatar. pp. 1556–1567, 25–29 
October 2014.

17. Sterckx,L., Demeester,T., Deleu,J., et al. (2014) Using active learn-
ing and semantic clustering for noise reduction in distant supervi-
sion. In: Proc. of the 4th Workshop on Automated Base Construc-
tion at NIPS 2014 (AKBC-2014), Montreal, Canada, December 
13, 2014, pp. 1–6.

18. Park,S.J., Yoon,B.H., Kim,S.K., et al. (2019) GENT2: an updated 
gene expression database for normal and tumor tissues. BMC 
Medical Genom., 12, 1–8.

19. Shaul,Y.D., Yuan,B., Thiru,P. et al. (2016) MERAV: a tool for com-
paring gene expression across human tissues and cell types. Nucleic 
Acids Res., 44, 560–566.

20. Zhang,J., Baran,J., Cros,A. et al. (2011) International cancer 
genome consortium data portal - a one-stop shop for cancer 
genomics data. Database J. Biol. Databases Curation, 2011, 
bar026.

21. Weinstein,J.N., Collisson,E.A., Mills,G.B. et al. (2013) The Can-
cer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet., 45, 
1113–1120.

22. Dingerdissen,H., Torcivia-Rodriguez,J., Hu,Y. et al. (2018) 
BioMuta and BioXpress: mutation and expression knowledge-
bases for cancer biomarker discovery. Nucleic Acids Res., 46, 
D1128–D1136.

23. Dingerdissen,H.M., Bastian,F., Vijay-Shanker,K. et al. (2020) 
OncoMX: a knowledgebase for exploring cancer biomarkers in the 

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad061/7284097 by guest on 07 M

ay 2024

http://w3id.org/corekb/sparql
https://gda.dei.unipd.it
https://zenodo.org/record/7577127
https://zenodo.org/record/7577127
http://w3id.org/corekb/sparql
https://gda.dei.unipd.it
https://github.com/GDAMining/core
https://github.com/GDAMining/core


Database, Vol. 00, Article ID baad061 15

context of related cancer and healthy data. JCO Clin. Cancer 
Inform., 4, 210–220.

24. Gupta,S., Dingerdissen,H., Ross,K.E. et al. (2018) DEXTER: 
disease-expression relation extraction from text. Database J. Biol. 
Databases Curation, 2018, bay045.

25. Lee,H.J., Shim,S.H., Song,M.R. et al. (2013) CoMAGC: a cor-
pus with multi-faceted annotations of gene-cancer relations. BMC 
Bioinform., 14, 323.

26. Lee,H.J., Cuong Dang,T., Lee,H., et al. (2014) OncoSearch: cancer 
gene search engine with literature evidence. Nucleic Acids Res., 42, 
416–421.

27. Piñero González,J., Ramírez-Anguita,J.M., Saüch-Pitarch,J. et al.
(2020) The DisGeNET knowledge platform for disease genomics: 
2019 update. Nucleic Acids Res., 48, D845–D855.

28. Bundschus,M., Bauer-Mehren,A., Tresp,V. et al. (2010) Digging 
for knowledge with information extraction: a case study on human 
gene-disease associations. In: Proc. of the 19th ACM Confer-
ence on Information and Knowledge Management, CIKM 2010. 
ACM, Toronto, Ontario, Canada. pp. 1845–1848, 26–30 October
2010.

29. Marchesin,S., Menotti,L., Silvello,G. et al. (2023) CORE: gene 
expression-cancer knowledge base. January. https://zenodo.org/
record/7577127.

30. Giachelle,F., Marchesin,S., Silvello,G., et al. (2023) Searching 
for reliable facts over a medical knowledge base. In: Proc. of 
the 46th International ACM SIGIR Conference on Research and 
Development in Information Retrieval, SIGIR 2023. ACM, Taipei, 
Taiwan. 23–27 July 2023.

31. Ciardiello,F., Arnold,D., Casali,P.G. et al. (2014) Delivering pre-
cision medicine in oncology today and in future—the promise 
and challenges of personalised cancer medicine: a position paper by 
the European Society for Medical Oncology (ESMO). Ann. Oncol.,
25, 1673–1678.
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Appendix SPARQL queries
Queries A1–A3 can be used to find the most involved genes 
(and their roles) in cancer diseases. Queries A4–A6 can be 
used to identify the most discussed genes, cancer diseases and 
facts. Query A7 can be used to find out the fact most exten-
sively discussed in the literature. The code to cut and paste 
the queries in the SPARQL endpoint without syntax issues 
is available here: https://github.com/GDAMining/core/blob/
main/sparql/example-queries.txt.

Querie A1. Find the ten most involved oncogenes in can-
cer diseases.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
SELECT ?gene (COUNT(?fact) AS ?numFacts)
WHERE
{
   ?fact core: expressedBy ?gene;
         core: hasType ``ONCOGENE''∧∧xsd:
               string.
}
GROUP BY ?gene
ORDER BY DESC(?numFacts)
LIMIT 10

Querie A2. Find the ten most involved biomarkers in 
cancer diseases.
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
SELECT ?gene (COUNT(?fact) AS ?numFacts)
WHERE
{
   ?fact core: expressedBy ?gene;
         core: hasType ``BIOMARKER''∧∧ xsd:
               string.
}
GROUP BY ?gene
ORDER BY DESC(?numFacts)
LIMIT 10
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Querie A3. Find the ten most involved tumor suppressor 
genes in cancer diseases.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
SELECT ?gene (COUNT(?fact) AS ?numFacts)
WHERE
{
   ?fact core: expressedBy ?gene;
         core: hasType ``TSG''∧∧ xsd:string.
}
GROUP BY ?gene
ORDER BY DESC(?numFacts)
LIMIT 10

Querie A4. Find the ten most discussed genes in the 
literature.

PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
SELECT ?gene (COUNT(DISTINCT ?article) AS
       ?numArticles)
WHERE
{
   ?fact core: expressedBy ?gene;
         core: supportedBy ?evidence.
 
   ?evidence core: extractedFrom ?article.
}
GROUP BY ?gene
ORDER BY DESC(?numArticles)
LIMIT 10

Querie A5. Find the ten most discussed cancer diseases 
in the literature.

PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
PREFIX umls: <http://linkedlifedata.com/
             resource/umls/id/>
 
SELECT ?disease (COUNT(DISTINCT ?article) AS
       ?numArticles)
WHERE
{
   ?fact core: involves ?disease;
         core: supportedBy ?evidence.
 
   ?evidence core: extractedFrom ?article.
   FILTER (?disease NOT IN (umls:C0086692,
           umls:C0027651, umls:C0006826,
           umls:C1306459))
}
GROUP BY ?disease
ORDER BY DESC(?numArticles)
LIMIT 10

Querie A6. Find the ten most discussed facts in the litera-
ture.

PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
PREFIX umls: <http://linkedlifedata.com/
             resource/umls/id/>
SELECT ?disease (COUNT(DISTINCT ?article) AS
       ?numArticles)
WHERE
{
   ?fact core: involves ?disease;
         core: supportedBy ?evidence.
 
   ?evidence core: extractedFrom ?article.
   FILTER (?disease NOT IN (umls:C0086692,
           umls:C0027651, umls:C0006826,
           umls:C1306459))
}
GROUP BY ?disease
ORDER BY DESC(?numArticles)
LIMIT 10

Querie A7. Find the longest-discussed fact in the literature.

PREFIX core: <http://gda.dei.unipd.it/cecore/
             ontology/>
SELECT ?gene ?relation ?disease ?pubDate
       (COUNT(DISTINCT ?article) AS
       ?numArticles)
WHERE
{
   ?fact core: expressedBy ?gene;
         core: hasType ?relation;
         core: involves ?disease;
         core: supportedBy ?evidence.
 
   ?evidence core: extractedFrom ?article.
   ?article core: publicationYear ?pubDate.
 
   {
     SELECT ?fact (COUNT(DISTINCT ?pubDate) AS
            ?numYears)
     WHERE
     {
     ?fact core: supportedBy ?evidence.
      
     ?evidence core: extractedFrom ?article.
     ?article core: publicationYear ?pubDate.
     }
     GROUP BY ?fact
     ORDER BY DESC(?numYears)
     LIMIT 1
   }
}
GROUP BY ?gene ?relation ?disease ?pubDate
ORDER BY ASC(?pubDate)
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