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Abstract
In recent years, there are a huge influx of genomic data and a growing need for its phenotypic correlations, yet existing genomic 
databases do not allow easy storage and accessibility to the combined phenotypic–genotypic information. Freely accessible allele 
frequency (AF) databases, such as gnomAD, are crucial for evaluating variants but lack correlated phenotype data. The Sequence 
Read Archive (SRA) accumulates hundreds of thousands of next-generation sequencing (NGS) samples tagged by their submitters 
and various attributes. However, samples are stored in large raw format files, inaccessible for a common user. To make thousands 
of NGS samples and their corresponding additional attributes easily available to clinicians and researchers, we generated a pipeline 
that continuously downloads raw human NGS data uploaded to SRA using SRAtoolkit and preprocesses them using GATK pipeline. 
Data are then stored efficiently in a cloud data lake and can be accessed via a representational state transfer application programming 
interface (REST API) and a user-friendly website. We thus generated GeniePool, a simple and intuitive web service and API for querying 
NGS data from SRA with direct access to information related to each sample and related studies, providing significant advantages over 
existing databases for both clinical and research usages. Utilizing data lake infrastructure, we were able to generate a multi-purpose 
tool that can serve many clinical and research use cases. We expect users to explore the meta-data served via GeniePool both in daily 
clinical practice and in versatile research endeavours.
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Introduction
The dramatic cost reduction in next-generation sequencing 
(NGS) in recent years has enabled a huge flux of human 
whole exome sequencing (WES) and emerging whole genome 
sequencing (WGS) data. However, the major databases of this 
large body of genomic variation are lacking in that no rele-
vant phenotypic data are attached or can be easily accessed, 
hindering effective optimal use in correlating the variants with 
phenotypes. Assessing phenotypic impact and pathogenicity 
of genomic variants is a challenge being addressed in many 
aspects, with allele frequency (AF) being a major criterion (1). 
There are currently several major AF tools, such as gnomAD 
(2) and 1000 Genomes (3). These tools have revolution-
ized variant pathogenicity evaluation by enabling clinicians 
and researchers to assess whether a candidate mutation is 
present in a population in proportion to the prevalence of 
the corresponding investigated disease. While they provide 
demographic data, phenotypic attributes are absent. In many, 
if not most, cases, demographic data alone are insufficient. 
Rare diseases, for example, are apparently not so rare (4), and 

disease-causing mutations may still appear as seemingly non-
harmful based on AF tools, including gnomAD (5). Ironically, 
clinicians and researchers can find a candidate mutation for a 
rare disease in a tool such as gnomAD in a few samples, with-
out being able to reach out and further learn if those samples 
have a matching phenotype.

This problem is addressed in part by the Sequence Read 
Archive (6) (SRA), which contains, among others, raw 
sequencing data of WES and WGS from various experiments, 
as well as phenotypic data corresponding with the genotype. 
Each sample has a corresponding BioSample page contain-
ing specific data with phenotypic information (e.g. age, dis-
ease and treatment), and samples from the same study are 
grouped under a BioProject page which provides information 
regarding the study and the submitters (7). Thus, a vari-
ant in a sample from SRA is accompanied by its BioSample 
information, and further specific data can be obtained by 
contacting the submitters directly via the BioProject page. 
However, while raw data and sample-related information 
are available online through the SRA database, processing 
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and querying the data is beyond the capabilities of non-
computation-savvy individuals (8). Being a major emerging 
genotype–phenotype AF database, SRA is expanding rapidly. 
Thus, containing it requires advanced database architecture, 
especially when dealing with massive WGS data (9) and clini-
cal data. Forming a framework to meet this need necessitates 
innovative scalability and cost-efficiency competencies which 
traditional methods lack compared with well-devised cloud 
storage architecture.

Cloud data lakes (10) are a modern approach for storing 
large amounts of data in a convenient and inexpensive way. 
The main idea is the separation of compute and storage layers. 
Thus, cheap cloud storage is used for storing the data, while 
compute engines are used for running analytics on these data 
in ‘on-demand’ mode. This architecture has become dominant 
in the industry in recent years and according to the recent 
studies is used at virtually all Fortune 500 enterprises (11).

To enable user-friendly accessibility to the combined 
genotype–sample description data in SRA, as well as practi-
cally unlimited cost-effective scalability of the rapidly expand-
ing large body of genotypic and phenotypic data, we built 
GeniePool, a simple and intuitive web service and API based 
on a data lake architecture.

Methods
NGS data preprocessing
Human publicly available WES raw data from SRA are 
obtained using the following parameters in the SRA search
bar: ‘((((illumina[Platform]) AND homo sapiens[Organ-
ism]) AND WXS[Strategy]) AND “Homo sapiens”[orgn:__
txid9606] AND cluster_public[prop] AND “biomol dna”
[Properties])’. The obtained table contains both SRA down-
load accessions and corresponding BioProject and BioSample 
IDs. Raw sequencing data are downloaded from SRA using 
sratoolkit.2.11.0 ‘prefetch’ command and then extracted 
using ‘fastq-dump’ command, including ‘–split-files’ option if 
data are paired-end sequencing. Raw data are cleaned using 
Trimmomatic-0.39 (12) and then aligned to hg38 (UCSC ver-
sion) using Picard and BWA-MEM (13) following GATK 
4.2.2.0 pipeline (14) to generate VCF files using ‘Haplo-
typeCaller’ function. To generate parallel hg19 VCFs, we 
used Picard’s LiftOverVcf function using UCSC’s hg38tohg19 
chain file. Variant effect annotation is done using SnpEff (15) 
5.0e. This pipeline is performed using our institutional high-
performance computing infrastructure at Ben-Gurion Univer-
sity of the Negev. Output VCF files are uploaded to the AWS 
S3 bucket in a gzipped format.

Data lake architecture
GeniePool runs on AWS Cloud and consists of several build-
ing blocks. First, our variants data lake is stored in AWS S3 
in Apache Parquet format. To enable efficient query of the 
lake, we partition it by chromosome and coordinate ranges. 
Second, we developed an Extract/Transform/Load (ETL) pro-
cess that inserts variants from the new samples (in VCF 
format) into the data lake. Our ETL is implemented with 
Apache Spark and runs on the Amazon Web Services Elastic 
MapReduce (AWS EMR) platform in ‘on-demand’ mode.

Application development
The back-end service includes a REST API that serves users’ 
queries over the data lake; it is written in Java and runs on 
the AWS Elastic Beanstalk platform. The front-end web ser-
vice is written in Python and runs on AWS Elastic Beanstalk 
platform. Data visualization is performed using Plotly (16).

Results
Processed data
Our database currently houses 54 402 samples in each ref-
erence genome, originating from >970 studies. The updated 
number of samples is displayed in our website (https://
geniepool.link) and is growing by ∼2000 samples routinely 
every 2 months. The total number of distinct variants is >2.2 
billion for each of the reference genomes. Querying the data 
is accessible by either our designated REST API or our web 
interface (Figure 1).

Cloud data lake efficiency and costs
At the time of submitting this manuscript, we store 1.1 TB of 
gzipped VCF files. The data lake, constructed from VCF files, 
consists of 151 K Parquet files with a total size of 171 GB. 
Our efficient ETL job that creates the whole data lake runs 
on a cluster of 30 nodes of type m5d.2xlarge with a running 
time of ∼2 h and a monetary cost of <10 dollars. Due to the 
unique architecture, storage cost of the current data lake is a 
∼50 dollars per year.

Application programming interface
GeniePool has a REST API that can receive requests including 
the reference genome (hg19/hg38) and genomic coordinates 
(e.g. 1:1000–2000). The result will be in JSON format of all 
variants within the specified range.

Web–user interface
Our simple user interface (UI) enables entering genomic coor-
dinates in either hg38 or hg19. Variants within selected coor-
dinates are displayed in a table with selectable rows, including 
dbSNP (17) IDs when available. Choosing a variant generates 
an interactive bar chart with a bar representing homozygotes 
and heterozygotes per study in BioProject who harbours the 
variant. Selecting a study provides links to the BioProject 
page and the individual BioSample pages containing data on 
each sample with the variant, including variant coverage and 
sequencing quality (Figure 2).

GeniePool use cases
Collaboration platforms like GeneMatcher (18) have become 
a standard practice in clinical genomics and research. 
GeniePool enables a more proactive approach by enabling 
the user to directly search candidate variants in other NGS 
samples, similar to searches in platforms such as gnomAD, 
but then to go on to inspecting their tagged attributes. Spe-
cific attributes can be very useful, especially for excluding 
candidate variants, e.g. finding the variant in question in sam-
ples from patients with a different disease or even in people 
that were explicitly tagged as healthy individuals. In cases in 
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Figure 1. GeniePool workflow. Raw genomic NGS data from SRA are preprocessed according to GATK’s best practices and stored efficiently using the 
Parquet format in a cloud data lake architecture. Preprocessed data are available via either a REST API or a designated web UI accompanied by 
BioSample data that provide information regarding specific samples.

which the phenotype was not tagged, users can find infor-
mation outlining who uploaded the samples harbouring their 
variant of interest via BioSample or BioProject and contact 
them to advance their case. This feature can be very important 
when considering late-onset disease. Our group has already 
used this methodology multiple times. For one, we study the 
Israeli Bedouin population extensively, an ethnicity that is 
not significantly represented in databases such as gnomAD. 
GeniePool made available >1200 Qatari exomes from a spe-
cific study on the Qatari population (19). This is extremely 
useful for us for in silico filtration of variants that are rare 
globally, but not locally. We have also contacted other groups 
in cases where a variant was found in just a few samples, ask-
ing them to check if a certain phenotype was overlooked in 
their patients. This can be proved to be a fertile strategy for 
initiating collaborations.

Discussion
GeniePool has been designed to enable cost-effective massive 
storage and easy querying of phenotypic and genotypic data 
of a practically unlimited number of samples. It is a novel 
application for evaluating variants based on their prevalence 
in the SRA dataset of human NGS. However, unlike other AF 
databases, rather than only providing information about AF 
for given coordinates, GeniePool delivers specific sample and 
study data.

In our hands, GeniePool has now become an effective tool 
for further analysis of candidate disease-causing genomic vari-
ants. In fact, several of our research projects have already 
undergone revision due to finding samples of other groups 
with several studied candidate variants that had documented 
phenotypes not resembling those of our studied families. 

It should be noted that many other variants were already 
ruled out during prior variant analysis using standard tools. 
Thus, GeniePool enabled ruling out further variants that 
could not have been ruled out by other AF databases, 
saving precious time and resources. We are now develop-
ing an in-house variant analysis tool which has, among 
other features, a direct link to GeniePool regarding each
variant.

Our greatest challenges are to fully utilize both massive 
numbers of NGS samples and their corresponding informa-
tion provided by BioProject and BioSample. Regarding these 
two databanks, their data do not have a consistent form and 
are mostly in free text. Our data lake approach is ideal for 
confronting both tasks. We plan on enriching GeniePool’s 
functionality by supporting queries not only on genomic coor-
dinates but also on meta-data derived from the published 
papers associated with the imported samples using artificial 
intelligence (AI) techniques. Also, we plan to have all publicly 
available WES samples in a matter of months. The following 
step will be adding WGS samples, which devour much more 
computational resources and storage, challenges well met by 
our cloud data lake architecture. Finally, we will adjust our 
pipeline to automatically update the database with each newly 
uploaded WES or WGS data onto SRA.

Until we integrate BioProject and BioSample automatically 
into search queries, it should be emphasized that GeniePool 
links its user to these databanks. It is important to note that 
even if specific data concerning a sample or a project are not 
noted, the BioProject page can lead directly to the submitters 
of the data. This itself has the potential to initiate collabora-
tions or in-depth queries regarding phenotypic significance of 
specific variants.

Introducing GeniePool to its intended audiences, including 
researchers and clinicians, presents a significant challenge due 
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Figure 2. GeniePool’s UI. Genomic coordinates can be searched for variants within NGS samples from SRA. Results are displayed in a table with 
selectable rows. Variants can be filtered by sample attributes. Selecting a variant generates an interactive graph displaying relevant samples per study. 
Clicking a bar provides direct links for additional information regarding the study and each of the samples harbouring the variant.

to its superficial similarity to gnomAD. Both databases pro-
vide the ability to search for information about specific vari-
ants in thousands of samples. However, the use cases of the 
two databases are distinct. gnomAD provides AF and ethnicity 

information per variant, while GeniePool, being composed 
of various studies, cannot provide such data accurately. Fur-
thermore, samples in gnomAD are entirely anonymous, and 
further information about individuals harbouring interesting 
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variants is not available. This limitation is where GeniePool 
sets itself apart by providing comprehensive and specific data 
on samples from previous studies. It is worth noting that this 
paradigm shift may not be immediately intuitive for the target 
audience, which is accustomed to using NGS databases mainly 
for querying allele frequencies, a capability that has signif-
icantly impacted clinical genomics. Nonetheless, GeniePool 
is not intended to compete with databases such as gnomAD,
but rather, it is a complementary software that addresses other 
research and clinical needs.

At the moment, GeniePool serves as an extension of SRA, 
BioProject and BioSample by combining processed data from 
each source and storing them in a data lake. This project 
demonstrates the advantage of using data lakes for genetic and 
clinical data integration. While SRA contains raw sequencing 
data, usually in FASTQ format, GeniePool’s data lake stores 
preprocessed VCF data without the intermediate BAM files 
generated in the GATK pipeline. We are aware of the fact 
that ideally, users would like to analyse both FASTQ and 
BAM files in various methods that cannot be used on the 
preprocessed VCF file, such as using tools for finding viral 
DNA (20), structural variants (21) and mobile element inser-
tions (22). We are planning on expanding the types of files 
and tools that will be accessible via GeniePool, knowing that 
building the project on top of a data lake makes our plans 
feasible for dealing for versatile types of data and algorithms 
in a scalable and cost-effective way. Currently, GeniePool 
focuses on VCF data as a step towards the realization of 
the ideal utilization of data lakes for making genomic data
accessible.

SRA contains massive amount of raw RNA-sequencing 
(RNAseq) data of various experiments from multiple biolog-
ical material and under multiple conditions, truly unpolished 
diamonds for researchers. Nevertheless, the common clinician 
and researcher do not possess the skills to preprocess such 
data—the exact same situation regarding WES and WGS data 
that GeniePool solves by preprocessing the raw data before-
hand and making it accessible with now available algorithms 
that can deal with extended amount of RNAseq samples (23). 
The same basic idea behind GeniePool can serve as the basis 
for making accessible the continuously uploaded raw RNAseq 
data uploaded onto SRA, with data lakes being the preferred 
way to efficiently confront the challenge of managing SRA’s 
constantly growing data loads.

It should be noted that GeniePool cannot include SRA sam-
ples that are also listed in dbGaP (24, 25) (the database of 
genotypes and phenotypes) because they require specific per-
mission for access. GeniePool thus only includes samples that 
were uploaded to SRA as public data and therefore require 
no permission for download. While there are about five times 
more controlled access samples than publicly available ones, 
the latter have continued to grow by the thousands yearly 
(Supplementary Figure S1), providing GeniePool the potential 
for continuous expansion.

The scalability of the data lake architecture is also suit-
able for managing sequencing data along with other heavy-
duty medical data, such as radiological imaging files. Such 
data can provide the means to utilize various algorithms 
integrate genetic and other heavy-duty types of medical
data (26).

Regarding reference genomes used by GeniePool, hg38 is 
used for raw data alignment, and then liftOver from the hg38 
files is further used to support hg19 as well. The new CHM13 

reference genome (27) (also known as T2T) will also be sup-
ported once it becomes more prevalent in either research 
or clinical settings. To maximize the utilization potential 
of CHM13, generating its variant data will be done using 
realigning raw data to it and not by using liftOver.

GeniePool has been set up as a genotype–phenotype 
database, enabling advanced queries for deciphering multi-
genic diseases, creating collaborations and a tool that can 
facilitate many research endeavours. Its data versatility 
encouraged us to make it available as soon as possible. We 
expect that it will enable users to answer scientific questions 
in both straightforward as well as creative manners, utiliz-
ing its combined easily interrogated combined genotypic–
phenotypic vast information.

Supplementary material
Supplementary material is available at Database online.

Data availability
GeniePool source code is available in the GitHub repository 
(https://github.com/geniepool).
GeniePool web UI is available at: https://GeniePool.link
REST API is available using: http://api.geniepool.link/rest/
index/$reference/$coordinates (with hg38/hg19 for reference 
and chr:start-end for coordinates, e.g. http://api.geniepool.
link/rest/index/hg38/1:12345789-123456798). Further infor-
mation and instructions regarding the API are available under 
the frequently asked questions (FAQ) section of the web UI.
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