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Abstract
Long non-coding ribonucleic acids (lncRNAs) account for the largest group of non-coding RNAs. However, knowledge about their function and 
regulation is limited. lncHUB2 is a web server database that provides known and inferred knowledge about the function of 18 705 human and 
11 274 mouse lncRNAs. lncHUB2 produces reports that contain the secondary structure fold of the lncRNA, related publications, the most 
correlated coding genes, the most correlated lncRNAs, a network that visualizes the most correlated genes, predicted mouse phenotypes, 
predicted membership in biological processes and pathways, predicted upstream transcription factor regulators, and predicted disease associa-
tions. In addition, the reports include subcellular localization information; expression across tissues, cell types, and cell lines, and predicted small 
molecules and CRISPR knockout (CRISPR-KO) genes prioritized based on their likelihood to up- or downregulate the expression of the lncRNA. 
Overall, lncHUB2 is a database with rich information about human and mouse lncRNAs and as such it can facilitate hypothesis generation for 
many future studies. The lncHUB2 database is available at https://maayanlab.cloud/lncHUB2.

Database URL: https://maayanlab.cloud/lncHUB2
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Introduction
Most of the transcribed genome encodes non-coding ribonu-
cleic acids (ncRNAs) compared with protein-coding genes 
(1). ncRNAs were once assumed to have no function and 
were referred to as ‘junk RNA’ due to their lack of protein 
product. However, it was soon realized that ncRNAs play crit-
ical roles in functional and regulatory eukaryotic biology (2). 
Interestingly, it has been shown that the number of ncRNAs 
exponentially increases with organismal complexity (3). Most 
evidence so far established that ncRNAs play an important 
role in regulating gene expression (4), while many ncRNAs 
were implicated as key factors in a broad range of diseases 
(5). Long non-coding RNAs (lncRNAs), defined as ncRNAs 
having >200 nucleotides in length, account for the largest por-
tion of ncRNAs. However, knowledge about their function is 
still limited. lncRNAs have been shown to directly interact 
with proteins, deoxyribonucleic acid (DNA), as well as other 
RNA molecules, highlighting their potential involvement in 
the formation of macromolecular complexes and participa-
tion in many biological processes (6). It is also established that 
lncRNAs play an important role in cell differentiation and 
development (7). Additionally, lncRNAs have been suggested 
as disease biomarkers due to their stability (8). lncRNAs have 
been associated with diseases such as cardiovascular disease, 

neurological disorders, and various cancers (9, 10). Despite 
this rapid progress, only few lncRNAs have well-established 
roles where their function, localization, and membership in 
biological processes, pathways, and diseases have been elu-
cidated. As the number of lncRNA–disease associations has 
increased in recent years, the interest in their potential role 
to serve as drug targets has also increased (10). Currently, 
there are few RNA-based therapeutics including small inter-
fering RNAs (siRNAs) and antisense oligonucleotides (ASOs) 
that bind to RNAs in a sequence-specific manner (11, 12). 
Due to the ability of lncRNAs to form secondary structures 
and their ability to interact with their targets in a structure-
specific manner, small molecules can also target lncRNAs due 
to their ability to disrupt lncRNA–target interactions (13). 
Small molecules are also less costly to produce and easier to 
deliver than siRNAs or ASOs (14). However, siRNAs or ASOs 
have the advantage of being more specific while requiring 
much less effort, time, and cost to identify and develop.’

To fill the knowledge gap that currently exists in our 
understanding of the roles of human and mouse lncRNAs, 
there has been an increase in the development of digi-
tal resources that consolidate information about lncRNAs. 
For example, the Rfam database compiles sequence and 
structure information from the literature to create multiple 
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Table 1. Comparison of features from resources providing information or analysis relating to lncRNAs

Resource PMID URL A B C D E F G H I J K L M

lncHUB2 https://maayanlab.cloud/lncHUB2/ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
lncBOOK 30715521 https://ngdc.cncb.ac.cn/lncbook/ ✕ ✓ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓
LNCipedia 30371849 https://lncipedia.org/ ✕ ✓ ✕ ✕ ✕ ✓ ✕ ✓ ✓ ✓ ✓ ✕ ✓
LncRNA2Function 25707511 http://mlg.hit.edu.cn/lncrna2function ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
Co-LncRNA 26363020 http://bio-bigdata.hrbmu.edu.cn/Co-

LncRNA/
✕ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

FANTOM6 32718982 https://fantom.gsc.riken.jp/6/ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓
LnCompare 31147707 http://www.rnanut.net/lncompare/ ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓
lncATLAS 28386015 https://lncatlas.crg.eu/ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✕
LncTarD 31713618 http://bio-bigdata.hrbmu.edu.cn/

LncTarD1.0/
✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

LncRNADisease 30285109 http://www.rnanut.net/lncrnadisease/ ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✓
Lnc2Cancer 33219685 http://www.bio-bigdata.com/lnc2cancer/ ✕ ✓ ✓ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓
LncSNP 33219 661 http://bioinfo.hrbmu.edu.cn/LincSNP ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
LncACTdb 34850125 http://www.bio-bigdata.net/LncACTdb/ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓
LNCmap 29325141 http://bio-bigdata.hrbmu.edu.cn/LncMAP/ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓
D-lnc 31390943 http://www.jianglab.cn/D-lnc/ ✕ ✕ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓
Lnc-GFP 23132350 N/A ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
LncRNAs2Pathways 28425476 https://cran.r-project.org/web/packages/

LncPath/
✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

If a resource had a broken URL, its features were taken from the relevant literature. Column values are as follows: A: expression across tissues, B: variants, 
C: drugs, D: co-expressed genes, E: function predictions, F: conservation, G: methylations, H: literature, I: structure, J: sequence, K: API, L: subcellular 
localization, and M: URL to site works.

sequence alignments, secondary structure, and covariance 
models for thousands of ncRNA families, which facilitate 
ncRNA DNA/RNA sequence annotation (15). lncBOOK (16) 
is a web-based resource that serves curated knowledge about 
human lncRNAs including conservation, variation, methyla-
tion, expression, interactions, and disease associations. Simi-
larly, LNCipedia (17) is a web server resource that provides 
data from manual curation of publications about lncRNAs. 
Both databases provide functional knowledge about ∼3000 
human lncRNAs directly curated from the literature.

Several other databases curate lncRNA associations with 
diseases, targets and biological functions manually from 
the literature, e.g., LncRNADisease 2.0 (18), Lnc2Cancer 
3.0 (19), LincSNP 3.0 (20), LncTarD (21), and LncACTdb 
3.0 (22). On the other hand, LncRNA2Function (23) and 
Co-LncRNA (24) are web server applications that provide 
inferred knowledge about lncRNAs based on RNA-seq co-
expression data. Extending this idea, Lnc-GFP (25) and 
LncRNAs2Pathways (26) integrate co-expression data with 
protein–protein interaction data and employ graph theory 
algorithms to predict gene function for human lncRNAs. 
Furthermore, LnCompare (27) integrates additional fea-
tures such as gene structure and evolutionary conservation 
to improve predictions. Fewer resources provide informa-
tion about lncRNA/small-molecule associations. For exam-
ple, LncTarD provides associations between lncRNAs and 
drug targets (21). LNCmap identified groups of lncRNAs 
perturbed by 1262 small molecules using the Connectiv-
ity Map (CAMP) database (28), and enrichment analysis 
to link diseases to these drugs (29). D-lnc reanalyzed 7037 
microarray gene expression datasets from the Gene Expres-
sion Omnibus (30) and the CMAP database to associate 
differentially expressed lncRNAs in response to drug per-
turbations and predicted lncRNA–drug interactions using 
lncRNA sequence similarity and drug structure similarity 
(31). Nevertheless, both LNCmap and D-lnc are limited by 
their relatively low lncRNA coverage. Recently, gene–gene 

co-expression correlations were used to expand lncRNA cov-
erage (32). In their study Wang et al. prioritized drugs to 
modulate cancer-associated lncRNAs by computing the over-
lap between differentially expressed genes (DEGs) for each 
drug in CMAP with lncRNA-associated genes found via co-
expression correlations computed for different cancer types 
in The Cancer Genome Atlas (33). However, neither of these 
studies leveraged the availability of the LINCS L1000 data 
(34), which contain >3 million expression profiles for >30 000 
small molecules (35). The LINCS L1000 dataset is a major 
expansion to the original CMAP. To summarize the collec-
tion of lncRNA knowledge bases and resources and to com-
pare these with the information provided by lncHUB2, we 
organized key common features across these resources in a 
comprehensive table (Table 1).

Here, we introduce lncHUB2, a database and an Appyter, 
that produces reports with knowledge about the function 
and regulation of 18 705 human and 11 274 mouse lncRNAs 
inferred from RNA-seq gene–gene co-expression correlations. 
lncHUB2 gene page reports provide knowledge about the pre-
dicted structure of the lncRNA, related publications, most 
correlated coding and non-coding genes, predicted biological 
processes, regulation by transcription factors, disease associ-
ations, average expression across tissues and cell lines, cellu-
lar localization, and predicted small molecules and CRISPR 
knock-outs (KOs) of single genes to up-/down-regulate the 
expression of the lncRNA based on the LINCS L1000 data. 
Overall, lncHUB2 is a comprehensive resource that bridges 
the knowledge gap between lncRNAs, diseases, biological 
functions, and small molecules at the genome-wide scale.

Results
The lncHUB2 Appyter and database: serving 
lncRNA gene page reports
lncHUB2 is implemented as an Appyter and as a full-stack 
web-based application with a user interface and a backend 
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Figure 1. lncHUB2 Appyter and web application workflow. The lncHUB2 Appyter or web-based application takes as input 18 705 unique human and 
11 274 unique mouse lncRNAs and generates a report. This report contains useful information such as the predicted secondary structure and expression 
levels in various tissues and cell lines. Additionally, using gene–gene correlations generated from publicly available RNA-seq data from ARCHS4, 
lncHUB2 provides predicted biological functions, as well as predicted small molecules and CRISPR-KO gene regulators, and gene-gene co-expression 
networks to explore closely related genes and lncRNAs associations based on expression similarity.

database. Appyters (36) are light-weight bioinformatics appli-
cations directly created from Jupyter Notebooks (37). A 
collection of Appyters that perform various types of bioinfor-
matics data analysis pipelines are hosted on the Appyters Cat-
alog. The lncHUB2 Appyter produces reports about human 
lncRNAs by fetching knowledge from multiple sources and 
making predictions about lncRNA functions via gene–gene 
co-expression correlations. To make predictions, the lncHUB2 
Appyter utilizes a gene–gene co-expression matrix generated 
from RNA-seq data downloaded from ARCHS4 (38) to gen-
erate predictions for 18 705 unique human and 11 274 unique 
mouse lncRNAs. For each lncRNA, the lncHUB2 Appyter 
generates a report in the form of tables and interactive and 
static visualizations, which are available for download as CSV, 
HTML and static PNG, SVG and PDF files. The lncHUB2 
Appyter results were precomputed for the annotated lncRNAs 
and are stored in the lncHUB2 database. In addition to the 
Appyter, a user interface provides access to the database via a 
landing page for each lncRNA. Both the lncHUB2 web-based 
application and Appyter take as input a human Ensembl ID 
(39) or a human GENCODE lncRNA name (40) and generate 
a report for each human lncRNA. The lncHUB2 user interface 
has an additional functionality that enables users to submit 
genomic co-ordinates to search for lncRNAs within a specific 
genomic region.

Once a qualified lncRNA identifier is submitted to the 
lncHUB2 database, the user is redirected to the corresponding 
results landing page report (Figure 1). At the top of the report, 

the predicted secondary structure of the lncRNA is visualized 
with RNAfold (41), an RNA folding tool that is based on 
a thermodynamics algorithm. The predicted secondary struc-
ture can be downloaded as a PNG file by clicking a download 
button. The top of the landing page also contains canonical 
and alternative transcript sequences for the input lncRNA, 
which were extracted from Ensembl (42). These sequences 
can be downloaded as CSV files. Next, the landing page dis-
plays the frequency of publications for the input lncRNA from 
1992 to 2021. The PubMed IDs (PMIDs) and dates can be 
downloaded as a CSV file. Next, the landing page displays 
tables containing the top positively and negatively correlated 
coding genes, and the top positively and negatively correlated 
lncRNAs with the input lncRNA. Correlations are computed 
with the Pearson correlation coefficient (PCC) using the most 
recent version of ARCHS4 V2 (38) processed with the kallisto 
aligner (43) against GENCODE V41, which corresponds to 
Ensembl 107. To visualize the top positive gene–gene corre-
lations, an interactive network, made of the top 100 most 
correlated genes with the submitted lncRNA, is produced. 
Each node in the network represents a gene, and nodes are 
colored based on their chromosomal origin with the excep-
tion for the lncRNA in focus, which is colored in red. The 
edges that connect the nodes in the network represent corre-
lation levels. Clicking on a node highlights its edges. Hovering 
over a node displays both the gene name and its chromosomal 
location. Next, links to Enrichr (44), a comprehensive gene-
set enrichment analysis tool, are available for the top 25, 50, 
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Figure 2. UMAP plots of 18 705 human lncRNAs and 11 274 mouse lncRNAs. (A) The lncRNAs level of intensity is by their median expression in the 
testis, where MALAT1 has the highest relative expression across tissues. The arrow is pointing to the location of MALAT1 on the UMAP plot. (B) 
lncRNAs level of intensity is by their log median expression in the peripheral nervous system, where Dleu2 has the highest relative expression across 
tissues. The arrow is pointing to the location of Dleu2 on the UMAP plot.

100, 200, 300 and 500 positively and negatively most corre-
lated genes with the input lncRNA. For each gene-set library 
in Enrichr, terms are ranked by their significance of overlap 
with the input gene set. These enrichment results can be used 
to suggest pathways, ontological terms, diseases, and drugs 
that may be associated with the input lncRNA.

The lncHUB2 lncRNA report pages also provide predicted 
biological functions for each lncRNA using an alternative 
method. These predictions are made by calculating the mean 
PCC between the lncRNA and the genes within each set 
of a gene-set library. P-values are computed to account for 
differences in set sizes. Terms in each gene-set library are 
ranked by the right- and left-tailed P-values to prioritize terms 
that have significant positive and negative correlations with 
the input lncRNA. Predictions are made with the following 
gene-set libraries from Enrichr: Mouse Genome Informatics 
(MGI) Mammalian Phenotypes (45), Gene Ontology Biologi-
cal Processes (GO BP) (46), Kyoto Encyclopedia of Genes and 
Genome (KEGG) pathways (47), DisGeNET diseases (48) and 
transcription factors from ChEA (49) and ENCODE ChIP-seq 
(50). The prioritized terms are predicted functions that are 
likely associated with the lncRNA, and these are displayed 
as bar charts and can be downloaded as CSV files. Next, the 
lncHUB2 reports offer information about the relative expres-
sion of the queried lncRNA across 280 unique tissues and cell 
types, and 57 unique cell lines, in humans; and 27 unique tis-
sues and cell types, and 20 unique cell lines, in mice. RNA-seq 
samples from ARCHS4 (38) were first automatically labeled 
by tissue and cell line, and then the expression statistics for 
each lncRNA were computed for each tissue, cell type, and 
cell line. These results are displayed as box plot graphs and 
can also be downloaded as CSV files.

lncHUB2 also provides global visualizations of expression 
similarities for the collection of the 18 705 human lncR-
NAs and the 11 274 mouse lncRNAs in tissues, cell types, 
and cell lines. The uniform manifold approximation and 
projection (UMAP) (51) method is used for dimensionality 
reduction. It was applied to randomly selected RNA-seq sam-
ples from ARCHS4 (38). Within these visualizations, each 
dot represents a lncRNA and the proximity of each dot to 

other dots approximates the similarity between the lncRNAs 
expression vectors. A black arrow is pointing to the location 
of the queried lncRNAs. lncRNAs are colored based on their 
median expression in the tissue, cell type, and cell line where 
the queried lncRNA has the highest relative expression. An 
interactive version of this plot is available only in the lncHUB2 
Appyter reports, where the user can select points on the plot 
by median expression across all tissues, cell types, and cell 
lines (Figure 2). Finally, lncHUB2 reports rank lists of small 
molecules and CRISPR KOs of single genes that are predicted 
to up- or downregulate the expression of the target lncRNA 
based on the LINCS L1000 data (35). A small molecule or 
single-gene KO perturbation is predicted to up- or downreg-
ulate an lncRNA if the corresponding L1000 up/down gene 
expression signature has a high mean PCC with the input 
lncRNA. Since the L1000 up and down gene signatures are 
of similar length, small molecules are ranked by mean PCCs; 
however, right-tailed P-values are also provided. The resul-
tant tables are displayed within the lncRNA report and can 
be downloaded as CSV files.

Benchmarking the lncHUB2 functional predictions
lncHUB2 predicts biological functions, small molecules and 
single-gene perturbations that may modulate the expression 
of lncRNAs by leveraging gene–gene correlations generated 
from processed RNA-seq data. To benchmark the ability of 
this gene–gene correlation matrix to recover relevant bio-
logical functions, we utilize various gene-set libraries from 
Enrichr (52), data from lncRNA knock-down followed by 
expression, and lncRNA literature–based databases and pub-
lications. Up and down gene sets from lncRNA knock-down 
followed by expression (n = 99) were sources from FAN-
TOM6 (53). The significance of the overlap between gene sets 
from FANTOM6 with lncRNAs most correlated genes con-
tained within lncHUB2 was assessed using the Fisher’s exact 
test (Figure 3). Only the lncRNAs with the most overlap are 
shown. Several positively and negatively correlated genes with 
the same lncRNAs show significant overlap. Interestingly, the 
genes that are downregulated when the lncRNA is knocked 
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Figure 3. Comparing FANTOM6 lncRNA knockdowns followed by expression with gene–gene co-expression correlation data from ARCHS4. For each 
lncRNA in FANTOM6, we computed the significance of the overlap between the top 200 DEGs for each lncRNA knockdown (|log2 fold change 
(FC)| > 0.5; false discovery rate (FDR) < 0.05; |Zscore| > 1.645) in at least one knock-down condition and the top 200 most positively and top 200 most 
negatively correlated genes from the ARCHS4 gene–gene co-expression matrix using Fisher’s exact test. The P -values were then converted to 
−log10(P -values) and are visualized as stacked bar charts where the bottom part of the bar denotes the significance of overlap with positively correlated 
genes and the top part of each bar denotes the significance of overlap with the negatively correlated genes for each lncRNA. Only the top 37 lncRNA’s 
down genes with the most overlap and the top 21 lncRNA’s up genes with the most overlap are shown out of a total of 87 assessed.

down, and are positively correlated with the lncRNA, showed 
the most overlap (Figures S2 and S3). Hence, this suggests that 
these lncRNAs may act as positive regulators of transcription, 
but this could also be an indirect effect. Such relationship is 
most significant for the lncRNA AC124789.1, an lncRNA 
with no associated publications. Overall, we observe that 
gene–gene correlations could recover some of the same genes 
that are experimentally observed to be up- or down-regulated 
following lncRNA KOs.

Since it is known that lncRNAs are near the genes that they 
regulate, next, we aimed to examine how many of the most 
positively correlated genes with lncRNAs are cis or trans. To 
answer this question, we computed the portion of cis and trans
genes mostly correlated between lncRNAs and coding genes, 
coding genes and coding genes, and non-coding genes and 

other lncRNAs for both humans and mice (n = 100) (Table 2). 
The ratio of cis-to-trans genes did not differ greatly between 
the groups except for coding genes that had a lower percent-
age of cis genes in both mice and humans. Thus, it does not 
appear that cis or trans genes are significantly more highly 
prioritized based on their co-expression, and most regulatory 
relations predicted via co-expression are trans for lncRNAs 
and coding genes. 

Next, we aimed to benchmark the prediction of lncRNA–
disease associations. To achieve such benchmark, we com-
pared the lncRNA–disease predictions based on co-expression 
with associations reported in the LncRNADisease database 
(18). Specifically, disease terms with at least five experimen-
tally validated lncRNA associations from LncRNADisease 
v2.0 were used as a ‘gold’ standard. Disease terms from 
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Table 2. The percentage of the top 100 most correlated genes (human n= 62 548 and mouse n= 54 454), non-coding genes (human n= 42 278 and 
mouse n= 31 568), coding genes (human n= 20 270 and mouse n= 21 886) and lncRNAs (human n= 18 705 and mouse n= 11 274) with other lncRNAs.

All genes Coding genes- lncRNAs Coding genes-coding genes lncRNAs-lncRN

Mouse cis 8.107% ± 9.814 8.087% ± 9.254 5.998% ± 10.074 8.725% ± 17.851
trans 91.894% ± 9.814 91.913% ± 9.254 94.002% ± 10.074 91.275% ± 17.851

Human cis 3.568% ± 2.587 3.637% ± 2.403 1.518% ± 3.817 4.366% ± 2.669
trans 96.432% ± 2.587 96.363% ± 2.403 98.481% ± 3.817 95.634% ± 2.669

LncRNADisease v2.0 were mapped to the closest related dis-
ease term in the DisGeNET (48) gene-set library from Enrichr 
(52). For each disease term, the 18 705 human lncRNAs 
were ranked based on their mean PCC with the correspond-
ing gene set from DisGeNET, and an area under the receiver 
operating characteristic (AUROC) curve was calculated to 
evaluate the ranking performance. For most diseases, prior-
itizing lncRNAs using mean co-expression performed much 
better than random (Figure 4). To confirm that this method 
was not prioritizing lncRNAs based on their expression lev-
els alone, the rank and median expression for each lncRNA 
were examined (Figure S3). For many diseases, it seems that 
lowly expressed lncRNAs are prioritized, but this is not 
always the case. For example, spinocerebellar ataxia type 9 
and Beckwith–Wiedemann syndrome have prioritized highly 
expressed lncRNAs associated with their known genes.

Reporting and predicting lncRNA subcellular 
localization
The subcellular localization of lncRNAs is important for 
their function. The reports produced for each lncRNA in 
lncHUB2 contain information about the lncRNA subcellu-
lar localization in human cell lines sourced from lncAtlas 
(54). Although lncAtlas provides this information for many 
lncRNAs, we sought to expand this coverage by using an 
unsupervised learning approach to extend the coverage for the 
18 705 human lncRNAs in the lncHUB2 database. Predicted 
localization per cell line was computed utilizing the ranked 
gene–gene expression correlations for the subset of genes con-
tained within lncAtlas, providing a prediction between −0.5 
and 0.5, indicating whether the lncRNA is predicted to be 
localized to the nucleus or the cytoplasm. The receiver oper-
ating characteristic (ROC) curves for each cell line show that 
for some cell lines this method reliably predicts the mea-
sured localization (Figure 5A). Within the lncHUB2 database, 
the predicted localizations are only shown for lncRNAs not 
contained within the lncAtlas database, for those lncRNAs 
within lncAtlas, lncHUB2 provides the measured localiza-
tion. The lncHUB2 reports provide visualizations of the 
known (Figure 5B) and predicted (Figure 5C) localizations for 
the top five cell lines ranked by their respective ROC curves.

The ability to predict the subcellular localization varied per 
cell line. For many of the cell lines, the AUROC was <0.7, indi-
cating that these predictions are unreliable. There are a few 
reasons that the ability to predict subcellular localization was 
inconsistent across the cell lines. First, the number of genes 
with subcellular localization information varied significantly 
per cell line from 5000 to 21 000. In general, the cell lines 
with the highest AUROCs were those with greater coverage 
of genes. For example, A549 (15 180 genes), HUVEC (15 145 
genes), MCF7 (17 073 genes) and H1.hESC (21 382 genes) 
have relatively high AUROCs. Few cell lines with large gene 

coverage had relatively low AUROCs. For example, IMR90 
contained information about 5599 genes and had an AUROC 
of 0.7285 and GM12878 contained information about 15 064 
genes and had an AUROC of 0.6678. The inability of our 
approach to predict the subcellular localization for these two 
cell lines could be explained by lower correlations between the 
genes and lncRNAs in those cell lines. Since we want the users 
of lncHUB2 to only consider the most reliable predictions, we 
only report predicted subcellular localizations for the five best 
performing cell lines: A549, HUVEC, MCF.7, H1.hESC and 
IMR90.

Case Study I: HOTAIR (ENSG00000228630)
To demonstrate the usability of lncHUB2, we first present 
a case study for a well-studied lncRNA called HOTAIR. 
HOTAIR was first discovered in 2007, where it was found 
to be located within the HOXC locus on Chromosome 12 
and co-expressed with HOXC genes (55). It was initially 
shown that the 5′ end of HOTAIR interacts with the poly-
comb repressive complex 2 (PRC2) complex, while the 3′

end interacts with the LSD1/CoREST/REST repressive com-
plex, and thus HOTAIR was theorized to serve as a scaffold 
for chromatin-modifying complexes (56). While HOTAIR’s 
interaction with PRC2 was theorized to play an essential role 
in PRC2-mediated transcriptional repression of the HOXD 
locus, more recent studies have disputed this finding. Instead, 
it was found that, independent of PRC2, HOTAIR overex-
pression led to small transcriptomic changes. Additionally, it 
was found that HOTAIR tethering to chromatin led to gene 
silencing and that PRC2 was dispensable in this process (57).

HOTAIR’s gene–gene correlation network can be visual-
ized in the report generated by lncHUB2 for
HOTAIR (Figure 6). In this network, the HOXC genes, includ-
ing HOXC-AS3, HOXC10, HOXC11 and HOXC13, are 
visualized to the left of HOTAIR, showing that lncHUB2 
gene correlations can recover known co-expression relation-
ships. Interestingly, HOTAIR is directly connected to genes 
that are trans, which can be assessed through the nodes’ vary-
ing colors. Although these directly connected genes are not 
associated with HOTAIR in the literature, they could be inter-
esting targets to investigate in conjunction with HOTAIR. 
Although HOTAIR has poor sequence conservation, its sec-
ondary structure is relatively conserved in mammals, sug-
gesting its involvement in similar biological functions across 
different species (58). The HOXD locus encodes for transcrip-
tion factors essential for development, and the dysregulation 
of HOXD genes has been linked to skeletal deformities in 
mice (59–61). HOTAIR-KO mice were previously shown to 
display upregulation of many genes, including HOXD genes, 
and exhibit skeletal abnormalities during development (62). 
This finding, however, has been disputed in a more recent 
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Figure 4. Predicting and evaluating the predictions of lncRNA–disease associations using gene–gene co-expression correlations. For each disease term 
from the DisGeNET gene-set library downloaded from Enrichr, the 18 705 human lncRNAs were ranked by their negative mean PCC with the 
corresponding gene set (bars at the center). The AUROC was calculated (bars at the right side of the plot) using the ranks of lncRNAs known to be 
associated with the same disease based on experimentally validated lncRNA–disease associations from LncRNADisease v2.0 (bars at the left side of 
the plot).

study, where HOTAIR was found to be dispensable in nor-
mal mouse development, only eliciting a subtle effect on the 
cis genes Hoxc11 and Hoxc12 (63). HOTAIR has also been 
associated with a wide range of cancers and has shown to 
have oncogenic properties when overexpressed (64, 65). The 
upregulation of HOTAIR in normal breast epithelial cells 
was shown to induce hallmarks of cancer such as increased 
proliferation, migration and tumor invasion in vivo (66). 
High expression of HOTAIR has also been associated with 
increased chemoresistance and lower survival rates in lung 
cancer patients (67). Additionally, HOTAIR has been linked 
to heart disease and heart defects. In humans, HOTAIR 
upregulation has been linked to congenital heart disease (68) 
and HOTAIR polymorphisms have been linked to coronary 
artery disease (69). HOTAIR is also downregulated in patients 
with end-stage heart failure, and this observation was sub-
sequently confirmed in a mouse model (70). Studies have 
revealed other functions for HOTAIR including involvement 
in protein degradation, inflammation, DNA damage response 
and cell signaling (71). Overexpression of HOTAIR alongside 
knock-down of miR-211 led to higher monocyte expression 
of the cytokines interferon (IFN)-γ, interleukin (IL)-6, IL-17, 

tumor necrosis factor alpha (TNF-α), IL-1β and IL-6 R (72). 
HOTAIR knock-down also induces changes in NFκB target 
gene expression, particularly for macrophages (73). HOTAIR 
was proposed to modulate DNA damage response through the 
activation of NFκB (74). The lncHUB2-predicted biological 
functions for HOTAIR recover many of these recently estab-
lished functions including HOTAIR’s involvement in cancer, 
cell cycle, DNA damage response and immune signaling 
(Figures S4 and S5).

Across all tissues and cell types, lncHUB2 reports sug-
gest that HOTAIR has the highest relative expression in 
synovial tissue and sarcoma (Figure S6A). There is evidence 
that HOTAIR promotes the progression of synovial sarcoma 
(75). The third highest tissue expression reported by lncHUB2 
for HOTAIR is in the cervix, and HOTAIR has been asso-
ciated with cervical cancer progression (76). lncHUB2 also 
displays the cell lines with the highest relative expression 
of HOTAIR (Figure S6B). The cell line with the highest 
expression of HOTAIR is normal human dermal fibroblasts 
(NHDFs) (Figure S6B), a cell line derived from primary 
NHDFs. Overexpression of HOTAIR in systemic sclerosis der-
mal fibroblasts induces the transcription factor GLI2, leading 

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad009/7069621 by guest on 28 April 2024



8 Database , Vol. 00, Article ID baad009

Figure 5. Unsupervised learning to predict the localization of lncRNAs by cell line. (A) Co-expression gene–gene correlations were used to predict 
localization values for each human lncRNA for the 15 cell lines in lncAtlas. For each human lncRNA, the 35 371 genes present across the cell types in 
lncAtlas were ranked by PCCs and ranks were multiplied by the existing RCIs from lncAtlas and summed. True positives and false positives were 
calculated for CN RCIs >1 and <−1 per cell line. (B) Subcellular localization RCIs for XIST, which are available for the displayed cell lines from lncAtlas. (C) 
Predicted subcellular localization for TSIX, an antisense gene to XIST. Subcellular localization information for TSIX is not available in lncAtlas for the five 
cell lines. These cell lines have the highest AUROCs as reported in (A).

to the pro-fibrotic phenotype (77). The cell line with the sec-
ond highest expression of HOTAIR is PANC-1, an epithelial 
cell line isolated from pancreatic duct carcinoma. Consis-
tent with this observation, HOTAIR has shown to be highly 
expressed in pancreatic cancer (75). The next cell line with 
the highest expression of HOTAIR is G401, an epithelial-
like kidney cell derived from an infant rhabdoid tumor. It 
was reported that HOTAIR is highly expressed in atypical 
rhabdoid tumors (78). Overall, lncHUB2 prediction about 
HOTAIR’s biological functions are supported by literature, 
as well as producing predictions about additional HOTAIR’s 
roles in normal physiology and disease.

Case Study II: LINC00941(ENSG00000235884)
LINC00941 is a relatively under-studied lncRNA with <30 
publications mentioning it as of late 2022. Most of the 

publications that discuss LINC00941 are cancer-related. 
LINC00941 has been implicated in various hallmarks of can-
cer across a variety of cancer types and has been shown 
to be a potential useful prognostic biomarker. LINC00941 
expression has been used to successfully predict the survival 
of patients with lung adenocarcinoma (LAD) (79, 80) and 
was identified as a biomarker for hypoxia, which is associ-
ated with reduced survival of LAD patients (81, 82). Genes 
highly correlated with LINC00941 in LAD were found to 
be enriched for PI3K/AKT signaling and focal adhesion (83). 
LINC00941 has also been implicated in non–small cell lung 
cancer, where it was found to promote angiogenesis and tumor 
progression by sponging miR-877-3p, which is a negative reg-
ulator of VEGFA (84). LINC00941 is upregulated in oral 
squamous cell carcinoma (OSCC) and was shown to induce 
epithelial-to-mesenchymal transition (EMT) in vitro by asso-
ciating with the heterogeneous nuclear ribonucleoprotein K 
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Figure 6. Interactive gene–gene co-expression network for the lncRNA HOTAIR. The HOTAIR gene–gene co-expression network contains the top 100 
genes most correlated with HOTAIR. The thickness of the edges represents the magnitude of the PCCs, and nodes representing genes are colored by 
their chromosome of origin except for the queried lncRNA, which is colored in bright red. The network is pruned so that each node on average has less 
than three edges.

(hnRNPK) (85). Another study found that LINC00941 acti-
vates the Wnt/β-catenin signaling pathway in OSCC (86). 
LINC00941 expression has shown to be positively corre-
lated with gastric cancer progression (87, 88). LINC00941-
knock-down experiments reduced gastric cancer cell prolif-
eration and migration in vitro as well as tumor growth in 
mice (89). In pancreatic cancer, LINC00941 has shown to 
activate the LIMK1/Cofilin-1 pathway, which enhances cell 
proliferation and migration by regulating the actin cytoskele-
ton (90). In pancreatic adenocarcinoma, LINC00941 was 
found to sponge miR-873-3p and upregulate the expres-
sion of ATXN2 (91). In pancreatic ductal adenocarcinoma, 
LINC00941 was shown to promote glycolysis via Hippo sig-
naling pathway activation (92). LINC00941 is upregulated in 
colon cancer and was shown to sponge miR-205-5p, leading 
to increased expression of MYC (93). Another study found 
that LINC00941 binds to SMAD4, which prevents SMAD4 

ubiquitination and degradation and ultimately leads to the 
activation of the transforming growth factor beta (TGF-β) 
signaling pathway and subsequent EMT (94). Upregulation 
of LINC00941 has also been observed in patients with hep-
atocellular carcinoma (HCC) (95) and has been implicated 
in HCC relapse (96). LINC00941 upregulation has also 
been observed in patients with other liver diseases such as 
chronic hepatitis B and cirrhosis (95). In papillary thyroid 
cancer, it was found that TGF-β induces the transcription of 
LINC00941, which upregulates CDH6, an oncogene that pro-
motes metastasis and EMT by modulating cytoskeleton adhe-
sions, which hinder autophagy (97). LINC00941 is found 
to be a prognostic biomarker for head and neck squamous 
cell carcinoma (HNSCC) (98). In esophageal squamous cell 
carcinoma, LINC00941 was shown to sponge miR-877-3p 
and subsequently upregulate PMEPA1 (99). In addition to 
cancer, there is evidence in the literature that LINC00941 
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may be involved in cell differentiation. One study found that 
LINC00941 plays a role in regulating the differentiation of 
keratinocytes (100). Another recent study found that upreg-
ulated LINC00941 is associated with idiopathic pulmonary 
fibrosis (IPF), which is an incurable and progressive disease 
characterized by lung scarring (101). In IPF, LINC00941 was 
found to promote the differentiation of fibroblasts as well as 
increase cell proliferation and migration. It was also iden-
tified that ATF3 transcription factor enhances LINC00941 
expression. Additionally, LINC00941 was shown to pro-
mote glycolysis and laryngocarcinoma progression through 
the PI3K/AKT/mTOR signaling pathway and its upregulation 
of PKM (102).

lncHUB2 predicts several of the known biological pro-
cesses discussed above based on significant positive correla-
tions between LINC00941 aND genes associated these terms 
(Figure S7). For example, two of the top predicted KEGG 
pathways are cell cycle and glycolysis, which are consistent 
with the literature. Most of the predicted GO biological pro-
cesses are novel and revolve around DNA replication, metabo-
lite biosynthesis, and immune processes (Figure S8). Predicted 
diseases from DisGeNET include cancers as the top two 
terms including composite lymphoma and childhood acute 
megakaryoblast leukemia. Although these cancer types were 
not previously associated with LINC00941 in the literature, 
they do coincide with LINC00941’s association with cancer 
progression in general. LINC00941’s predicted and potential 
role in immune regulation could be a potential new direc-
tion for better elucidating its pro-metastatic role in various 
cancers.

Case Study III: MEG3 (ENSG00000214548)
Maternally expressed gene 3 (MEG3) is another highly stud-
ied lncRNA shown to regulate cell proliferation and is con-
sidered a tumor suppressor (103). In cervical cancer cells, 
for instance, MEG3 is downregulated where it regulates 
the miR-21/PTEN axis, promoting cisplatin sensitivity (104). 
When knocked out, cervical cell proliferation and migra-
tion increase, while apoptosis is inhibited. Additionally, 
MEG3 is downregulated in multiple myeloma where it acts 
as an endogenous competitive RNA with miR-181a, inhibit-
ing tumor progression and possibly regulating HOXA11 by 
sponging miR-171a (105). MEG3’s proposed tumor sup-
pressor function has been theorized to act through both 
p53-dependent and independent pathways (106). MEG3 also 
functions to increase GluA1 subunits, a part of α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors, on the plasma membrane, suggesting its function may 
be critical for long-term potentiation (LTP) (107). MEG3 has 
also been suggested to play a role in Parkinson’s disease where 
its expression is downregulated, acting as a biomarker for 
cognitive decline and disease stage (108). MEG3 has also 
been linked to both pro-inflammatory and anti-inflammatory 
mechanisms. For instance, in acute lung injury in a mouse 
model, MEG3 showed a protective effect on excessive inflam-
mation through regulation of the TLR4/MyD88/NFκB path-
way mediated by miR-93 (109). Another study found that 
MEG3 regulates the immune response to bacterial infection in 
lungs through binding to miR-138 competitively with IL-1β, 
increasing IL-1β concentration (110). lncHUB2 predicts that 
IL17RB and IL17C downregulate the expression of MEG3 
based on the LINCS L1000 CRISPR-KO data (Table 3). 

Table 3. Top five L1000 small molecules predicted to downregulate the 
expression of MEG3

Rank CRISPR KO Up/down Mean PCC P-value

1 PIGW Down 0.0353754 3.74E−22
2 TUBD1 Down 0.04438307 1.61E−18
3 AJUBA Down 0.03274345 6.60E−18
4 IL17RB Down 0.05699057 1.94E−17
5 IL17C Down 0.03780365 2.14E−17

L1000 small molecules are ranked by P-value between MEG3 and the genes 
in the up gene-set small-molecule signatures.

Figure 7. MEG3 involvement in dermatitis and chronic inflammatory 
response. MEG3 is co-expressed (positively correlated) with the genes 
contained in the left box, which are downregulated by IL17C and IL17RB. 
Genes in the right box represent the intersection of genes associated 
with dermatitis and chronic inflammation when knocked out in mice and 
which are negatively correlated with MEG3.

MEG3 is co-expressed with anti-inflammatory genes that are 
downregulated by IL17C and IL17RB, and it is negatively cor-
related with genes that when knocked out in mice, it induces 
chronic inflammation and dermatitis (Figure 7). The top 
five predicted drugs that might upregulate MEG3 (Table 4) 
include RN-1734, a TRPV4 antagonist that was shown to 
reduce demyelination in central nervous system diseases as 
well as inhibit glial activation and IL-β and TNF-α production 
(111). Thus, RN-1734 may modulate excessive inflamma-
tory responses through its predicted effect on MEG3 expres-
sion. lncHUB2 was able to predict many of the functions 
found in the literature for MEG3 such as reduced LTP and 
abnormal AMPA-mediated synaptic currents (Figure S9). In 
the left-tailed predictions, MEG3’s interaction with p53 was 
also recovered in the GO BP and KEGG libraries as well as 
its involvement with the NFκB pathway. Interestingly, Dis-
GeNET top three predicted diseases were related to bacterial 
infection (Figure S10). Furthermore, many of the predictions 
from MGI, KEGG and GO BP were related to the dysfunc-
tion of synapses and neurotransmitter transport, supporting 
the role of MEG3 in LTP and Parkinson’s disease. MEG3’s 
role in regulating inflammatory response and neuronal func-
tions warrants further exploration, especially considering its 
potential as a therapeutic target.

Case Study IV: XIST (ENSG00000229807)
X-inactive-specific transcript (XIST) is one of the first lncR-
NAs that were discovered (112, 113). XIST is essential 
for X chromosome inactivation, and it is only expressed 
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Table 4. Top five L1000 small molecules predicted to upregulate the 
expression of MEG3

Rank Drug Up/down Mean PCC P-value

1 RN-1734 Up 0.03492403 4.90E−19
2 Amprenavir Up 0.02721223 2.67E−16
3 SA-441350 Up 0.03891477 1.22E−15
4 GW-788388 Up 0.03600107 3.35E−15
5 GALR3 Up 0.03087975 2.41E−14

L1000 small molecules are ranked by P-value between MEG3 and the genes 
in the up gene-set small-molecule signatures.

in female tissues (114). Recently, somatic activation of 
XIST was identified in a subset of male cancers (115). In 
ovarian cancer, XIST was shown to regulate the miR-506-
3p/FOXP1 axis, in turn regulating autophagy and carboplatin 
resistance (116). lncHUB2 predicts terms that align with the 
known XIST’s functions. For example, the top term from 
MGI Mammalian Phenotypes was chromosomal instability 
(MP:0008866), and for GO BP, mitotic DNA replication 
initiation (GO:1902975) and nuclear cell cycle DNA repli-
cation initiation (GO:1902315) (Figure S11). Many of the 
other right-tailed predictions revolve around DNA regula-
tory mechanisms, suggesting a central role for XIST in such 
biological processes. XIST has strong measured nuclear sub-
cellular localization (Figure 5B). For those lncRNAs that do 
not have predicted subcellular localization, lncHUB2 provides 
predicted localization. TSIX, an antisense lncRNA to XIST, 
is also predicted to be nuclear by lncHUB2. In mice, Tsix 
was shown to regulate Xist in cis, supporting this localization 
prediction (117).

Case Study V: SAMMSON (ENSG00000245248)
Survival-associated mitochondrial melanoma-specific onco-
genic non-coding (SAMMSON) is an lncRNA implicated in 
a myriad of regulatory mechanisms in a diverse set of cancers. 
For instance, SAMMSON is co-induced with the melanoma-
specific oncogene MITF, and it is highly expressed in most 
melanomas, while knock-down of SAMMSON decreases 
melanoma cell viability and sensitizes melanoma to therapeu-
tics (118). Additionally, the overexpression of SAMMSON 
in triple-negative breast cancer promoted cell proliferation, 
while the overexpression of p53 lessened this effect (119). In 
uveal melanoma, SAMMSON inhibition leads to the impair-
ment of protein translation and mitochondrial function (120). 
In OSCC, SAMMSON expression was found to be elevated 
and correlated with OSCC stage, suggesting it may play an 
important role in this type of cancer (121). SAMMSON 
expression is also closely related to survival time and clinical 
stage in gastric cancer (122). SAMMSON knock-down was 
also observed to inactivate the PI3K/AKT pathway, suppress-
ing the malignancy of glioblastomas (123).

lncHUB2 predicts a few of the functions documented in 
the literature in the left-tailed P-value results alongside many 
novel predictions (Figure S14). Many of the GO BP predic-
tions for SAMMSON by lncHUB2 are related to apoptosis. 
This is consistent with its involvement with the mitochon-
dria. Additionally, many of the predictions from right-tailed 
P-values encompass biosynthetic processes and metabolism 
(Figure S13). Since SAMMSON interacts with p32, which reg-
ulates mitochondrial homeostasis and metabolism, these pre-
dictions could elucidate additional functions for SAMMSON.

Case Study VI: USP2-AS1 (ENSG00000240405)
USP2-AS1, also referred to as glycoLINC or gLINC, is an 
lncRNA that is known to form a scaffold to bring together 
several metabolic enzymes from the glycolysis pathway (124). 
Related to this role, USP2-AS1 is also implicated in cancer, 
and its overexpression may promote cancer growth. USP2-
AS1 was observed to be a direct target of HIF1-α, and it is 
overexpressed in HNSCC, promoting cell proliferation and 
invasion through regulating DCAF13 activity (125). Addition-
ally, USP2-AS1 was observed to be upregulated in ovarian 
cancer (126). It is a direct target of the transcription factor 
Myc, a key oncogene, promoting tumor progression through 
the regulation of E2F1 expression (127).

lncHUB2 predicts cellular senescence from the KEGG left-
tailed P-value predictions and adenosine triphosphate (ATP) 
synthase complex assembly, both of which reflect findings in 
the literature (127) (Figure S16). Interestingly, its effect on 
glycolytic flux and glycolysis is not reflected in the predic-
tions. The KEGG left-tailed predictions did, however, predict 
many associated cancers such as chronic and acute myeloid 
leukemia, bladder, prostate and thyroid cancers. DisGeNET 
left-tailed predictions also included a range of cancers such 
as neuroblastic tumors, giant cell glioblastoma and tera-
tocarcinoma. Overall, lncHUB2 was able to identify that 
USP2-AS1 is associated with cancer progression. It is possi-
ble that such involvement is directly involved with enhancing 
glycolysis, but other possible mechanisms could be further
explored.

Discussion
lncHUB2 is a database, a website, and an Appyter that pro-
vides systematic knowledge about 18 705 human and 11 274 
mouse lncRNAs. lncHUB2 contains existing knowledge and 
predictions about the biological functions and drug and dis-
ease associations for most of the known but under-studied 
human lncRNAs. Leveraging gene–gene co-expression cor-
relations generated from publicly available RNA-seq data 
from thousands of independent studies, lncHUB2 can accu-
rately predict the biological functions of lncRNAs, and 
prioritize >10 000 small molecules and >10 000 CRISPR-
KO genes that would maximally up- or down-regulate the 
expression of each lncRNA. Overall, lncHUB2 is a signifi-
cant upgrade of the original lncHUB web server. The initial 
version of lncHUB was using a similar approach to pre-
dict gene functions, but predictions were provided for only 
three libraries: KEGG, MGI and GO BP. In addition, predic-
tions were made for only ∼4000 human lncRNAs. lncHUB2 
has predictions made with more gene set libraries, predic-
tions for the effects of small molecules, drugs, and CRISPR 
KOs on lncRNA expression levels, predictions and visuliza-
tion of the lncRNAs secondary structure, publications about 
the lncRNA, expression of lncRNAs across tissues and cell 
lines, global visualization of the gene expression similar-
ity between all human and mouse lncRNAs, and predic-
tions about the cellular localization of lncRNAs within cell
lines.

We present six detailed case studies that demonstrate how 
lncHUB2 can uncover and recover both new and previously 
known knowledge about lncRNAs. For the first case study, 
we selected HOTAIR, a well-studied lncRNA. lncHUB2 was 
able to recover HOTAIR’s association with HOXC genes, 
and through co-expression analysis, lncHUB2 pointed out 
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previously established roles of HOTAIR involvement in can-
cer, cell cycle, DNA damage response and immune signaling. 
Additionally, lncHUB2 identified tissues where HOTAIR is 
highly expressed, especially in specific cancer types. For the 
second case study, we selected LINC00941, which is a rel-
atively under-studied lncRNA with <30 related publications 
in PubMed. We found that lncHUB2 predicted some of 
the biological functions that have already been associated 
with LINC00941 such as cell cycle and glycolysis. Addition-
ally, lncHUB2 predicted novel associations for LINC00941 
such as involvement in regulating immune system functions 
and biosynthesis processes. MEG3, another highly studied 
lncRNA, had many of its known functions identified by 
lncHUB2 predictions such as reduced LTP and abnormal 
AMPA-mediated synaptic currents, as well as interactions 
with the p53 and NFκB pathways. Additionally, the pre-
dictions for L1000 small molecules and CRISPR-KO genes 
that may up- or down-regulate MEG3 expression provided 
a possible mechanism for how MEG3 could be involved in 
chronic inflammation and dermatitis. lncHUB2 was also able 
to recover the functions of XIST, an lncRNA responsible for 
X chromosome inactivation, predicting functions related to 
DNA initiation and replication. Additionally, for SAMM-
SON, an lncRNA that acts outside the nucleus, lncHUB2 
provided predictions supported in the literature such as inter-
action with p53, apoptosis, and cell proliferation. Finally, 
for the lncRNA USP2-AS1, lncHUB2 predicted involvement 
in cellular senescence and ATP production, while the role of 
USP2-AS1 in glycolysis was not identified. lncHUB2 did, how-
ever, associate USP2-AS1 with a variety of cancers. Through 
these case studies we demonstrated how lncHUB2 can poten-
tially predict biological functions for lncRNAs using both 
significant negatively and positively correlated annotated gene 
sets, and potentially modulating small molecules and CRISPR-
KO genes. Overall, lncHUB2 has the potential to serve as 
a useful hypothesis generation tool for researchers studying 
lncRNAs.

Although lncHUB2 gene report pages provide reliable 
results, lncHUB2 has some limitations that should be dis-
cussed. For example, lncHUB2 makes predictions about 
lncRNA functions and disease associations by simply calcu-
lating the mean PCCs between a lncRNA and gene sets associ-
ated with biological functions, diseases, and small molecules. 
lncHUB2 predictions can potentially be improved by applying 
more complex machine learning algorithms. Recently, there 
has been an increase in applying machine learning methods 
to uncover knowledge about lncRNAs such as lncRNA–
disease associations (128–132), lncRNA–protein interactions 
(133, 134), and lncRNA annotation (135). Another poten-
tial limitation of lncHUB2 is that it is using of a ‘global’ 
gene–gene co-expression matrix generated from randomly 
selected RNA-seq samples from ARCHS4 (38). Since gene co-
expression can be context-specific, especially for genes that 
are variably expressed across different cell types and tissues, 
such as lncRNAs, selecting appropriate RNA-seq samples 
to produce a more accurate context-specific co-expression 
matrix can potentially improve predictions. These limitations 
can potentially be addressed by leveraging PrismEXP (136), 
an algorithm that automatically builds context-specific co-
expression matrices and trains a regression model to improve 
unsupervised gene function predictions compared to using the 
global cross-tissue co-expression matrix. Observing signifi-
cant positive or negative correlations does not indicate direct 

causality. Experimental evidence is likely needed for elucidat-
ing the regulatory mechanisms of each lncRNA. However, 
challenges remain with setting up such experiments because 
regulatory effects may be indirect (137). For example, despite 
a strong negative correlation observed after DNA dam-
age between individual lncRNA/coding-gene pairs, namely, 
NOP14-AS1:NOP14 and LIPE-AS1:CEACAM1, direct causal 
effect could not be elucidated experimentally by perturbing 
these genes (138). This is just one example of how correlations 
may be the result of indirect system-wide effects, and the func-
tional predictions produced by lncHUB2 should be viewed 
with caution and verified in experimental settings. The sub-
cellular predictions provided in the lncHUB2 report also have 
some limitations. They are based on the same global gene–
gene correlations and thus are affected by the same caveats 
hindering the functional predictions. Additionally, the com-
position and number of genes with subcellular localization 
values that are available for each cell line from lncAtlas varies. 
This makes our ability to robustly predict the localization of 
lncRNAs across cell lines uneven. Although we only report 
predictions for the top five performing cell lines, attention 
should be paid to the consensus of localizations across these 
cell-lines. Additionally, the magnitude of these predictions 
(closer to −0.05 or 0.5) reflects the strength of the prediction 
for that cell line and should be considered. More robust pre-
dictions across cell lines might be achieved with more complex 
machine learning models. Utilizing Deep Learning and other 
supervised learning approaches is one direction that warrants 
further exploration. Like the functional predictions produced 
by lncHUB2, localization predictions should also be viewed 
with caution and verified in the experimental setting.

Conclusion
lncHUB2 is a database application and an Appyter that 
provides comprehensive knowledge about human lncRNAs, 
offering a wealth of information about 18 705 unique human 
and 11 274 mouse lncRNAs. By implementing lncHUB2 as 
an Appyter and as a simple web-based resource, we plan 
to routinely update the content within lncHUB2 without 
significant overhead. The comprehensive reports for each 
lncRNA in lncHUB2 include processed knowledge and pre-
diction about the lncRNA’s secondary structure, the place 
of the lncRNA within gene–gene co-expression networks, 
predicted biological functions and pathways, disease associ-
ations, predictions about regulation by transcription factors, 
predictions about subcellular localization, measured expres-
sion levels across various tissues, cell types, and cell lines, and 
predictions about small molecules and single gene CRISPR-
KOs that may modulate the lncRNA expression. Altogether, 
lncHUB2 is a useful resource for hypothesis generation, par-
ticularly for those lncRNAs whose functions have yet to be
elucidated.

Materials and methods
Secondary structure predictions
Complementary DNA (cDNA) sequences for lncRNAs 
were downloaded from Ensembl (Homo_sapiens.GRCh38.
ncrna.fa and Mus_musculus.GRCh38.ncrna.fa). Using the 
default settings, RNAfold v2.5.0 (41) was applied to the 
cDNA sequence of the canonical transcript for each lncRNA. 
Secondary structure predictions were not made if the cDNA 
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sequence was not available or if the cDNA sequence exceeded 
the maximum length RNAfold can manage.

Creating the gene–gene co-expression matrix
Separately for humans and mice, 6000 samples were ran-
domly selected from the ARCHS4 bulk RNA-seq samples. 
The samples were separately aligned with kallisto (43) against 
GENCODE v41 and vM30, which corresponds to Ensembl 
107 for both humans and mice. Genes with 0 reads across 
all 6000 samples were removed, resulting in 62 548 genes 
for humans and 53 454 genes for mice. Samples were then 
log2-transformed and quantile-normalized. Gene–gene corre-
lations were calculated with PCCs. To avoid misleading high 
correlations between lowly expressed genes, pairwise gene–
gene correlations were only calculated if at least one gene 
was expressed (normalized expression value >0) in ∼30% of 
the 6000 randomly selected samples. Otherwise, the pairwise 
correlation was set to 0.

Gene mapping
Ensembl gene IDs from ARCHS4 RNA-seq samples were con-
verted into gene symbols. First, lncRNAs were identified using 
an lncRNA annotation file downloaded from GENCODE 
(gencode.v41.long_noncoding_RNAs.gtf). Using the ‘gene_id’ 
and ‘gene_name’ columns, Ensembl IDs for annotated lncR-
NAs were converted to gene symbols. In total, 18 705 human 
and 11 274 mouse lncRNAs were identified in ARCHS4. This 
difference in the number of lncRNAs annotated in GEN-
CODE v41 (19 095) compared to those included in lncHUB2 
(18 705) is due to a filtering step in which genes with 0 reads 
across the 6000 randomly selected samples were removed 
when creating the gene–gene co-expression matrix used to 
make the predictions. Ensembl IDs not identified to be an 
lncRNA in GENCODE V41 were then converted to approved 
gene symbols using Human Genome Organisation (HUGO) 
Gene Nomenclature Committee (HGNC) with BioMart (139) 
(on 3 October 2022). Ensembl IDs that are mapped to the 
same symbol were manually checked and converted using the 
GeneCards database (140). Additionally, FANTOM-CAT (v6) 
(53) was used to label additional human lncRNAs. For genes 
without a gene symbol, the Ensembl ID was retained.

Creating a gene–lncRNA network visualization
All pairwise correlations between the top 100 genes correlated 
with the input lncRNA are extracted. The three edges with 
the highest correlation per gene (node) are used to initialize 
the network. Edges with weights <0.3 are dropped. To further 
prune the network, the edges with the lowest weight for each 
hub node are dropped. At the start of the pruning process, a 
hub node is defined as a node with >10 edges. The pruning 
process is repeated until the network has an average of <3 
edges per node. The top five edges for the input lncRNA are 
shown regardless of their weights.

Benchmarking gene prioritization using 
co-expression
For benchmarking the gene prioritization using co-expression, 
the significance of overlap between the top 200 most 
positively correlated and top 200 most negatively corre-
lated genes were computed with the observed DEGs from 
FANTOM6 (53). The Fisher’s exact test was used to assess 
this significance.

Assigning cis and trans modes to lncRNAs
To compute cis and trans modes for each lncRNA, the 
chromosomal location for each lncRNA was first sourced 
from GENCODE v41 and vM30 as well as from Ensembl 
107 through BioMart (139). Then, the top 100 correlated 
lncRNAs from the ARCHS4 (38) gene–gene co-expression 
correlation matrix were assigned cis or trans mode if they 
resided on the same chromosome (cis) or a different chromo-
some (trans). The reported statistics are an aggregation of the 
proportion of cis and trans modes for all lncRNAs.

Predicting subcellular localization values using 
co-expression
An unsupervised learning approach was utilized to predict 
subcellular localization values for all the human lncRNAs 
contained within the lncHUB2 database. First, the gene cov-
erage across lncAtlas cell types was aggregated and the subset 
of overlapping genes in the co-expression matrix was retained 
in addition to the human lncRNAs, resulting in 35 371 genes. 
For each lncRNA, the remaining genes were ranked by their 
PCC with the lncRNA. These ranks were scaled to values 
between 0 and 1. Thus, the more correlated a gene was to 
a given lncRNA, the closer its rank was to 1, and the less 
correlated a gene was to a given lncRNA, the closer its rank 
value was to 0. These rank values were multiplied by the cyto-
plasm/nucleus relative concentration index (CN RCI) from 
lncAtlas if such a value existed and summed to produce a sin-
gle value for each lncRNA. This process was repeated for each 
lncRNA, and then scores across all lncRNAs were normalized 
between 0 and 1. ROC curves were then calculated for each 
cell line, utilizing RCIs >1 and <−1 provided from lncAtlas as 
true positives and false positives. To report values similar to 
the RCIs provided by lncAtlas, these scores were shifted to a 
range between −0.5 and 0.5. The top five performing cell lines 
were then selected, and these are reported for those lncRNAs 
that do not have localization values in lncAtlas.

Extracting lncRNAs and GO biological processes 
from the literature
To collect PMIDs and dates for publications associated 
with lncRNAs, the PyMed Python library was utilized. The 
Ensembl ID, lncRNA gene symbol from GENCODE (40) and 
any symbols/previous symbols found in the HGNC database 
using BioMart (139), along with the terms ‘lncRNA’ or 
‘long non-coding RNA’, were used to query PubMed (e.g. 
(ENSG00000228630 OR HOTAIR) AND (lncRNA OR long 
non-coding RNA)). All PMIDs and dates were extracted 
for each lncRNA. To collect PMIDs associated with GO 
biological processes, each term was submitted to PubMed 
using the PubMed API and the top 20 000 PMIDs were
extracted.

Calculating P -values
To assess the significance of an lncRNA’s mean PCC with a 
gene set of varying sizes, P-values were calculated with respect 
to each term in the gene set libraries. Each term therefore 
had its own unique mean and SD for calculating z-scores. The 
cumulative normal distribution was used to convert z-scores 
into right- and left-tailed P-values, which are then converted 
to −log10 of the P-value for visualization in the lncHUB2 
report.

D
ow

nloaded from
 https://academ

ic.oupdev.silverchair.com
/database/article/doi/10.1093/database/baad009/7069621 by guest on 28 April 2024



14 Database , Vol. 00, Article ID baad009

Labeling ARCHS4 samples by tissue type and cell 
line
The sample descriptions from the ARCHS4 metadata were 
automatically searched for tissue and cell-line terminology. 
To create files with tissue and cell-line terminology, meta-
data files were first downloaded from CellMarker (141) 
and the Cancer Cell Line Encyclopedia (142). To generate 
a cell type to tissue mapping file, the ‘Human_Cell_Mark-
ers.txt’ file was downloaded from CellMarker (http://biocc.
hrbmu.edu.cn/CellMarker/). The ‘tissueType’ and ‘cellName’ 
columns were used. This file was manually cleaned to remove 
duplicate cell-type to tissue mappings. Rare cell types were 
removed, and some tissues were renamed to their broader tis-
sue type categories for simplification. For example, the ter 
endometrium was changed to uterus. This mapping file was 
further reduced by only keeping cell types that were present 
in the ARCHS4 sample descriptions. Finally, a few tissue types 
without cell-type mappings were manually added, for exam-
ple the stomach, adrenal cortex, intestine, oral cavity, soft 
tissue, colorectal and gallbladder. All terms were standardized 
by removing symbols and converting to lowercase. ARCHS4 
samples were then labeled by tissue type using a basic text 
search. First, sample descriptions were searched for cell types 
and then labeled with the corresponding tissue. If no cell type 
was detected, a basic text search was performed with tis-
sue names. Samples that had multiple labels were manually 
labeled by reading the sample description. To create a list 
of cell lines for the text search, the ‘sample_info.csv’ meta-
data file was downloaded from the DepMap portal (143). The 
‘stripped_cell_line_name’ column was used, and all cell lines 
were converted to lowercase. ARCHS4 samples not labeled 
with a tissue were searched for cell lines. Cell lines with three 
or less characters had the word ‘cell’ appended to them before 
the text search to prevent false-positive matches. The number 
of samples labeled with each tissue and cell is included in the 
downloadable CSV files for tissue or cell-line expression for 
each lncRNA in the field labeled ‘count’.

Calculating tissue- and cell-line-specific lncRNA 
expression
In the ARCHS4 data, all samples that were labeled with a 
tissue type or a cell line were separately collected, and only 
counts for lncRNAs were kept. The expression statistics for 
each lncRNA was then calculated for each tissue and cell line. 
Tissues with <20 samples were removed before statistics were 
calculated for each lncRNA, except for mouse cell lines for 
which the threshold was set at 10, increasing the reported 
mouse cell lines to 20.

LncRNA UMAP visualization for tissues and cell 
lines
A total of 3000 randomly selected ARCHS4 samples 
were log2-transformed and quantile-normalized. UMAP was 
applied to each dataset and then plotted with a scatter plot. 
Each lncRNA can be colored by median expression for each 
tissue type to visualize tissue-specific lncRNAs and lncRNA–
lncRNA similarity.

Prioritizing small molecules and CRISPR-KO genes 
that modulate lncRNAs
Processed into consensus signatures created from the L1000 
characteristic direction (144), up- and downregulated gene 

sets for chemical perturbations (l1000_cp.gmt) and CRISPR-
KO genes (l100_xpr.gmt) from SigCom LINCS (145) were 
downloaded from Enrichr (40). For each gene set, all 15 862 
lncRNAs were ranked by mean PCC with the up/down genes 
from the GMT file. The top 1000 lncRNAs were retained 
for each up and down gene-set signature. A new GMT file 
was then created with each lncRNA as the ‘term’ and all 
small-molecule perturbations ranked by mean PCC as the 
‘set’ members. This resulted in 13 043 lncRNAs with pre-
dicted small molecules and 12 899 lncRNAs with predicted 
CRISPR-KO genes in humans and 7951 lncRNAs with pre-
dicted small molecules and 7991 lncRNAs with predicted 
CRISPR-KO genes in mice. Small-molecule and CRISPR-
KO gene predictions can then be separated based on the 
direction of the signature. If an lncRNA is associated with 
an ‘up’ small molecule or CRIPSR-KO gene set, this small 
molecule/gene is predicted to upregulate the lncRNA and vice
versa.

Appyter and web portal development
Initially, to gather knowledge about lncRNAs, lncHUB2 
was implemented as a Jupyter Notebook workflow coded 
in Python. The notebook was converted into an Appyter 
(36). Appyters provide a rapid path to convert Jupyter Note-
books into full-stack web-based applications by inserting 
Jinja template code to specify user input form fields. Using 
the Appyter software development kit, a modified notebook 
is then compiled into a fully functional light-weight bioin-
formatics application. lncHUB2 is served on the Appyters 
Catalog. We ran the lncHUB2 Appyter with the input of 
the human and mouse lncRNAs, and the figures and files 
produced from the lncHUB2 Appyter were stored in a S3 
bucket on Amazon Web Services. The lncHUB2 website is a 
Flask-based application that instantly displays the precom-
puted and stored figures, tables, and files produced by the 
lncHUB2 Appyter. The application and its dependencies run in 
a Docker virtual machine, which is served on a four-node clus-
ter managed with Kubernetes. The front end of the application 
and its styling are implemented with JavaScript, Bootstrap,
and HTML.

Supplementary material
Supplementary material is available at Database online.

Data Availability
The gene-gene correlation matrix used to create the pre-
dictions for lncHUB2 is available for download from the 
ARCHS4 site at: https://maayanlab.cloud/archs4/download.
html. All processed and inferred lncRNA data served on 
lncHUB2 is available for download from: https://maayanlab.
cloud/lncHUB2 A database dump of the entire lncHUB2 
database can be made available upon request from the 
authors.
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