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Abstract
The development of high-throughput molecular testing techniques has enabled the large-scale exploration of the underlying molecular causes of 
diseases and the development of targeted treatment for specific genetic alterations. However, knowledge to interpret the impact of genetic vari-
ants on disease or treatment is distributed in different databases, scientific literature studies and clinical guidelines. AIMedGraph was designed to 
comprehensively collect and interrogate standardized information about genes, genetic alterations and their therapeutic and diagnostic relevance 
and build a multi-relational, evidence-based knowledge graph. Graph database Neo4j was used to represent precision medicine knowledge as 
nodes and edges in AIMedGraph. Entities in the current release include 30 340 diseases/phenotypes, 26 140 genes, 187 541 genetic variants, 
2821 drugs, 15 125 clinical trials and 797 911 supporting literature studies. Edges in this release cover 621 731 drug interactions, 9279 drug 
susceptibility impacts, 6330 pharmacogenomics effects, 30 339 variant pathogenicity and 1485 drug adverse reactions. The knowledge graph 
technique enables hidden knowledge inference and provides insight into potential disease or drug molecular mechanisms.
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Key Points

• AIMedGraph collects and interrogates standardized 
information about genes, genetic alterations and 
their therapeutic and diagnostic relevance and builds 
a multi-relational, evidence-based knowledge graph.

• The knowledge graph enables hidden knowledge 
inference and provides insight into potential disease 
or drug molecular mechanisms.

• The Web Application Interface version of AIMed-
Graph is freely accessible to users with different 
biomedical backgrounds.

Introduction
Comprehensive molecular profiling of various tumors leads to 
the concept of ‘personalized’ or ‘precision’ medicine (1). Pre-
cision medicine has played emerging roles in guiding clinical 
decisions, particularly in disease diagnosis and drug therapy 

(2–12). Although providing inadequate information, multi-
omics data are essential and applicable for the diagnosis 
and treatment of patients, especially with solid malignant 
metastatic tumors (1, 7, 9, 13). In the past decade, with 
the fast-developing next-generation sequencing techniques, 
biomedical scientists, genetic epidemiologists and pharmaceu-
tical scientists are able to investigate the impact of genetic 
differences between individuals on their susceptibilities to dis-
eases/drugs on large sample scales, generate evidence about 
the associations between genetic and phenotypic variations 
on the population level, reveal the genetic mechanisms of dis-
ease development and treatment action and develop molecular 
companion diagnosis kits and targeted therapies or interpret 
individual’s genetic variation profile.

However, information about the impact of omics variation 
from DNAs, RNAs, proteins and metabolites on clinical diag-
nosis/treatments and related clinical actionable information 
are distributed in different types of databases, publications 
and guidelines. Several databases have been developed to 
curate data from both omics and clinical sides. Compre-
hensive databases like the Online Mendelian Inheritance in 
Man (14) give brief, unstructured descriptions about genetic 
disorders and their associated genes. Orphanet (15) and 
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Genetic and Rare Diseases (16) collect and classify rare dis-
eases with involved genes and provide an inventory of orphan 
drugs. The Human Gene Mutation Database (17) manu-
ally curates information on germline mutations associated 
with inherited diseases, covering DNA-level mutations includ-
ing missense mutations, nonsense mutations and splice-site 
mutations. The Catalogue Of Somatic Mutations In Cancer 
(COSMIC) (18) collects multiple types of somatic mutations 
detected in human cancers. Clinvar (19), as an open database, 
collects all disease-associated genetic mutations, providing 
phenotype information, pathogenicity evaluations of these 
mutations and functional annotation based on Gene Ontol-
ogy (20). There are also some oncology-specific databases like 
Clinical Interpretations of Variants in Cancer (CIViC) (21), 
knowledge graph for hepatocellular carcinoma (KGHC)  (22), 
OncoKB (23), OncoTree (24) and PharmGKB (25), which 
collect the impact information of genetic variants on tar-
geted drug response, cancer diagnosis or prognosis. These 
databases, whether comprehensive or field-specific, adopt 
relational database techniques and store variants, diseases and 
drugs as rows and columns, and their relationships are given.

It is well documented that precision medicine knowledge 
is highly enriched by studies on multi-omics data, and the 
key components are the relationships between all the dif-
ferent omics entities (7, 26–34), e.g. variants, diseases and 
drugs, each at the scale of thousands to hundreds of thou-
sands. Knowledge graph techniques can help to construct a 
comprehensive view of these entities and their relationships 
through a process called semantic enrichment. It allows ques-
tion answering and search systems to retrieve and reuse com-
prehensive answers to given queries. The graph-based archi-
tecture to represent relations also supports the creation of new 
knowledge, establishing connections between data points that 

may not have been realized before. DisGeNET (35) has man-
aged to build a knowledge graph on gene–disease or variant–
disease associations inferred from studies like genome-wide 
association studies. However, there is currently still no knowl-
edge graph providing evidence-based variant–drug relations, 
which is the most important information needed for precision 
medicine (1, 2, 36–38).

This article describes the methodology of AIMedGraph, 
which represent and integrate precision medicine knowledge 
into multiple relations. The AIMedGraph knowledge graph 
curated detailed information about diseases, drugs, genes, 
genetic variants and the impact of genetic variations on dis-
ease development and drug treatment from multiple data 
resources (Figure 1) in an evidence-based medicine approach. 
It laid the basis of a self-developed querying and answer 
system. Based on a multi-relational knowledge graph, users 
with various biological and medical backgrounds can visu-
alize variant–drug relationships and get inferred information 
about drug development.

Materials and methods
Precision medicine knowledge deconstruction and 
representation
The first step to developing a knowledge graph is to define 
the entities, the classification and direction of relationships 
between entities and the attributes describing the entities 
for the communication and integration between different 
data resources. In general, we need to deconstruct precision 
medicine knowledge and develop data models to represent 
knowledge in a way computers could understand and process. 
The main entities in precision medicine knowledge are defined 

Figure 1. The AIMedGraph knowledge graph. (A) Simplified AIMedGraph architectures; (B) AIMedGraph data sources.
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to be genes, variants, diseases, drugs, clinical trials and sup-
porting evidence levels. Relation classes include the relations 
between diseases, such as subtypes, stages and complications 
of diseases, relations between genes and diseases, relations 
between genetic variants and diseases, the pathogenicity of 
variants for a disease, the indications of drugs, interactions 
between drugs, the impact of variants/genes on drug ther-
apy, the disease, drug and gene/variant a clinical trial study 
on and the literature studies supporting entity or relation-
ship (Figure 1A).

Clinical entity data model and relationships
Drug data model
The data model of drugs collects their common database 
ID, type, name, synonym, Chinese name, trade name, drug 
target, indication, instruction, chemical structure, molecule 

weight, chemical formula, pharmacology information includ-
ing mechanism of action, metabolism, toxicity, adverse effects 
and the drug–drug interaction, consisted of interacting drugs 
and effects (Figure 1; Supplementary Table S1). Drugs are 
classified into being either small molecules or biotech drugs.

Disease classification
Diseases in AIMedGraph refer to a wide range of medi-
cal terms including pathological diagnosis names, disease 
stages, symptoms, molecular typing and normal traits. The 
Unified Medical Language System (UMLS) was adopted to 
standardize medical terms and codes and builds the seman-
tic relationship between diseases. These medical terms are 
further organized into a classification tree by expert clini-
cians with reference to pathology classification, disease stage, 
metastasis, reoccurrence and molecular typing (Figure 2A) 

Figure 2. Illustration of the AIMedGraph relation graph. (A) Example of the disease classification tree. (B) Example of the relation graph between genes, 
variants, drugs and diseases.
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and oncology diseases were classified with reference to 
OncoTree (24). For instance, there are Stages I, II, III and 
IV of non-small cell lung cancer, as well as pathologi-
cal squamous cell, adenocarcinoma and large cell of lung 
cancer (Figure 2A). A brief description directly extracted 
from the UMLS was also provided for each disease
entity.

Clinical trial data model
The data model for clinical trials in AIMedGraph col-
lects information registered on the China drug trial site 
(www.chinadrugtrial.cn) and the US clinical trial site (www.
clinicaltrial.gov). Attributes defined in this data model include 
the official title, official number, indication, recruiting status 
and study phase (Figure 1; Supplementary Table S1).

Omics entity data model and relationships
Genes collected in AIMedGraph are mainly protein-coding 
genes. Information about genes and their variants were 
extracted from the National Center for Biotechnology Infor-
mation’ public databases Entrez (http://www.ncbi.nlm.nih.
gov/Entrez/), Ensembl (39), 1000 genomes (40) and the Single-
Nucleotide Polymorphism database (41). Summary infor-
mation about genes includes their gene names, synonyms, 
brief descriptions and related clinical trials. Basic information 
about genes collects more features, including being oncogene 
or not, being tumor suppressor gene or not, external database 
IDs, human genome (HG) position on chromosomes and 
reference genome assembly version (Supplementary Table S1).

Attributes collected for variants include the gene variant 
location, CoDing Sequence (CDS) change, amino acid change, 
transcript ID, HG position, exon located on, variant type, 
amino acid change type and the Sorting Intolerant from Tol-
erant prediction. Different types of variations differ on some 
features as structural variants like fusion and copy number 
variation do not have CDS change and amino acid change 
information. Supplementary Table S1 lists the features col-
lected for variants with a curated data model and collected 
information in AIMedGraph. The nomenclature of molecules 
and variations follows international standards set by the 
Human Genome Organisation Gene Nomenclature Commit-
tee and the HG Variation Society (HGVS) and was normalized 
and corrected by self-developed script following the interna-
tional standard HGVS to use the most 3′-end position of 
the transcript when aligning variant sequence to the refer-
ence genome. Pharmacogenetic haplotype markers, which are 
groups of variants, follow the star allele nomenclature (42).

Clinical and omics association
The development of disease, or efficacy of treatment, is 
affected by variations in different genes. The impacts of 
omics variants on clinical information are further divided into 
three categories: disease pathogenicity, drug susceptibility and 
pharmacogenomics.

Variant–disease pathogenicity relations were mostly 
extracted from ClinVar. The variant that was pathogenic or 
benign with supporting evidence on the top three ClinVar evi-
dence levels (practice guideline, review by expert panel and 
criteria provided by multiple submitters with no conflicts) was 
collected. Criteria used follow the American College of Med-
ical Genetics and Genomics guideline and the Association for 
Molecular Pathology guideline (43). According to its host or 

major neighbor gene of a variant, gene–disease relationships, 
together with a brief description and a score of the evidence, 
were directly extracted from DisGeNET (35).

Drug susceptibility, that is, drug response association, 
mainly collects the impact information of molecular vari-
ations on treatment, including targeted therapy, immune 
therapy, hormone therapy and chemotherapy. Drug response 
information was retrieved from the Food and Drug Admin-
istration (FDA) of the United States, the National Medical 
Products Administration of China, clinical guidelines like 
the National Comprehensive Cancer Network, the Euro-
pean Society for Medical Oncology and the Chinese Society 
of Clinical Oncology and literature studies in PubMed and 
manually reviewed by expert genetic consultants (Figure 1, 
Supplementary Table S1). The response of variants to drugs 
are grouped into four categories: sensitive, likely sensitive, 
likely resistant and resistant, with clinical annotations that are 
curated descriptions about supporting study design, sample 
size, sampling population and related numerical indexes over-
all response rate, overall survival, progression-free survival, 
etc.

Pharmacogenomics information was extracted from Drug-
Bank and covered interacting gene/enzyme, allele name, gene 
name, genotype, nucleic acid change, evidence type, UniProt 
ID, description and reference, as shown in Figure 1 and 
Supplementary Table S1.

Relationship graph
Graph database Neo4j provides the technical foundation 
to store, manage and visualize all the attributes and rela-
tionships described earlier (Figure 2B). Relationships curated 
in AIMedGraph include the disease classification, drug–
drug interaction, gene–variant ownership (PIK3CA-H1047L; 
EGFR-L858R/L861Q/G719A; Figure 2B), variant–disease 
pathogenicity, variant–drug–disease drug susceptibility (Gefi-
tinib resistant to lung cancer with the PIK3CA H1047 vari-
ant, but likely sensitive to patients with the EGFR L858R
variant; Figure 2B), variant–drug–disease pharmacogenomic 
impact (Afatinib has both sensitive and pharmacogenomic 
effects in case of the EGFR L858R-positive variant in lung 
cancer; Figure 2B), clinical trial–drug–indication recruitment 
condition and supporting reference to all these relations.

AIMedGraph Application Programming Interface
AIMedGraph is available as a web application program-
ming interface on http://aimedgraph.tongshugene.net:8201 to 
query, analyze and visualize the content of AIMedGraph. 
Information will be extracted via keywords for specific genes, 
variants, diseases, drugs or literature studies. The search 
results are organized into relationship graphs and tables in six 
separate modules to provide different views of the information 
(Supplementary Table S1). The front page also provides entity 
statistics of the currently released version.

AIMedGraph Application Programming Interface (API) 
is an integration of multiple modern techniques, includ-
ing graph database Neo4j for the relation storage, Elastic-
Search + mysql for the data storage, Sprint Boot and Redis 
for the backend service, Vue and ElementUI for the front-
end framework and NeoVis for the relation graph, allowing 
a comprehensive set of functions of the API to query, visu-
alize and mining the attributes and relations of all the key
components.
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Computing algorithm of relation prediction
The entities integrated into AIMedGraph are connected by 
evidence-based relations and form a comprehensive gene–
variant–disease–drug–trial–reference knowledge network. It 
provides a solid basis for novel relation prediction.

The reliability of the predicted link is measured by the 
Adamic–Adar algorithm based on the shared neighbors 
between two nodes. It is computed using the following for-
mula: 

𝐴(𝑥,𝑦) = ∑
𝑢∈𝑁(𝑥)∩𝑁(𝑦)

1
log |𝑁(𝑢)|

where N(u) is the set of nodes adjacent to u. A value 
of zero for A(x, y) indicates that nodes x and y are not 
close to each other, while a higher value indicates closer
relation.

The average reliability value for the 10 519 predicted drug–
indication relations is 1.629, while the average reliability 
value for the known 680 drug–indication relations is 9.997. 
Targeted therapies like gefitinib, Afatinib or Erlotinib have 
very high values on their relations with non-small cell lung 
cancer (NSCLC), being 45.578, 34.010 or 35.857, respec-
tively. Similarly, relations like imatinib–gastrointestinal stro-
mal tumors and pembrolizumab–melanoma all have very high 
values (42.533 and 55.503, respectively). This proved the 
reliability of the Adamic–Adar algorithm for link prediction. 
In summary, as a comprehensive knowledge graph, AIMed-
Graph enables the efficient analysis and interpretation of 
genetic profiles.

Results
Statistics of AIMedGraph
To date, there are 187 541 variants curated in AIMedGraph 
where there are pieces of evidence for their significant associ-
ations with disease or treatment. As shown in Table 1, about 
2821 drugs and 30 340 diseases/traits/phenotypes are associ-
ated with these variants/genes, with 33 784 associations on 
variant pathogenicity, 9279 on drug susceptibility related to 
758 targeted therapies and 598 diseases and 6330 on pharma-
cogenomics effect. Adverse effect information was curated for 
1485 drugs as well. Enrollment information for 15 125 clini-
cal trials related to these drugs or diseases was also curated 
into AIMedGraph for patients to get involved. Compared 
with the DisGeNET platform, AIMedGraph contains more 
diseases and genes a little bit. More importantly, only drug–
disease relations and variant–drug relations can be searched 
and presented in AIMedGraph, not in DisGeNET, such as 
drug susceptibility impacts, pharmacogenomics effects and 
drug interactions. Because OncoKB is a specific precision 
oncology knowledge base, there are a total of 113 drugs avail-
able for 133 cancer types, far <348 drugs for various cancer 
types in AIMedGraph.

The 187 541 variants are diverse in types, including single-
nucleotide variant (SNV), insertion, deletion, indel, com-
plex, inversion, translocation, duplication, copy number gain, 
copy number loss, microsatellite, variation that is a large 
chromosome-level change, pharmacogenetic haplotype, hap-
lotype single variant and diplotype that follows the star allele 
nomenclature (Table 2). There are 187 172 variants that are 
related to/locate on 6548 genes. There are 15 367 genes 
coming from DisGeNET that are directly associated with 

Table 1. Metrics comparison between AIMedGraph, DisGeNET and 
OncoKB

AIMedGraph DisGeNET OncoKB

Relationship 242 901 1 134 942a +
369 554b

NA

Disease 30 340 30 170 133
Gene 26 140 21 671 688
Variant 187 541 194 515 5753
Drug 2821 NA 113
Drug interaction 621 731 NA NA
Drug susceptibility 9279 NA NA
Pharmacogenomics 

effect
6330 NA NA

Variant pathogenicity 33 784 NA NA
Drug adverse 

reactions
1485 NA NA

Clinical trails 15 125 NA NA
Relation visualization Multi-relational NA NA

NA: not applicable.
aGene–disease associations.
bVariant–disease associations.

Table 2. AIMedGraph variant metric

Variant type Number

SNV 166 883
Insertion 811
Deletion 9966
Indel 944
Duplication 4254
Copy number gain 30
Copy number loss 30
Complex 1
Microsatellite 2867
Inversion 66
Translocation 151
Variation (a chromosome-level change) 33
Haplotype, single variant 21
Haplotype 23
Diplotype 595

diseases without specific variant connections. Among the total 
26 140 genes integrated into AIMedGraph, 262 were anno-
tated to be an oncogene, and 273 to be tumor suppressor
genes. 

Distribution of drug susceptibility in AIMedGraph
The majority of variants with drug susceptibility impacts are 
associated with less than seven drugs (15.02% with one, 
23.45% with two, 9.73% with three, 5.36% with four, 
11.72% with five and 13.79% with six drugs). Similarly, 
67.48% of genes are associated with less than four drugs 
(17.18% with one, 11.04% with two and 39.26% with three 
drugs) (Figure 3A and B). The susceptibilities of 36 drugs are 
affected by six KRAS variants, G12R, L19F, G12C, G13V, 
G13E and G12I, respectively. On the gene level, EGFR and 
KRAS all accumulate drug susceptibility variants, with EGFR
associated with 50 drugs and KRAS with 45 drugs (Figure 3A 
and B). The indications associated with these drug suscep-
tibility variants are less evenly distributed with 30.89% of 
variants associated with only one indication and 39.23% 
with two indications (Figure 3C). Some variants, including 
BRAF V600E, the copy number variation of ERBB2, PTEN
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Figure 3. Distribution of drug susceptibility, pharmacogenomics effect and variant pathogenicity. (A) Distribution of the number of associated drugs per 
variant with drug susceptibility impacts. (B) Distribution of the number of associated drugs per gene with drug susceptibility impacts. (C) Distribution of 
the number of associated diseases per variant with drug susceptibility impacts. (D) Distribution of the number of associated diseases per gene with 
drug susceptibility impacts. (E) Distribution of the number of associated drugs per variant with pharmacogenomics effects. (F) Distribution of the 
number of associated drugs per variant with pharmacogenomics effects. (G) Distribution of the number of associated diseases per variant with 
pathogenicity. (H) Distribution of the number of associated diseases per gene with pathogenicity.

A121E and R161*, are associated with >10 cancer indications 
and form hubs of the network. Similarly, most of the genes 
these variants locate on are associated with one (20.86%) or 
two (55.83%) indications, with exceptional BRAF, ERBB2, 
KRAS and EGFR associated with >10 types of cancer indica-
tions (Figure 3D).

Distribution of pharmacogenomics in AIMedGraph
As illustrated in Figure 3E and F, the distributions of phar-
macogenomics effects are less smooth and have multiple 
peaks. The top peak, 38.26% variants, is associated with 
23 drugs. And the second peak, 27.964% variants, is asso-
ciated with only one drug. Four haplotypes of the most poly-
morphic gene CYP2D6, which metabolizes ∼20% of drugs 
(1250 CYP2D6 variant-related drugs/total variant-related 
drugs 6055 in AIMedGraph), CYP2D6*4, CYP2D6*11, 
CYP2D6*6 and CYP2D6*92, are associated with 40, 39, 39 
and 39 drugs, respectively. Additionally, the CYPD26 gene is 
associated with 43 drugs, while 53.7% of genes are associated 
with 1 drug only.

Variant pathogenicity in AIMedGraph
Another important type of relations in AIMedGraph is the 
pathogenicity of variant to disease. In Figure 3Gand H, the 

majority (89.52%) of variants are pathogenic or benign to 
one type of disease with a high level of supporting evidence 
(26 808 single relations over 29 946 total relations of variant–
disease in AIMedGraph). A few variants like BRCA2 A938fs
(43), POLG G848S (44, 45) and NF1 R1276Q (43, 46) have 
been proven to be pathogenic and leading to multiple diseases, 
while DSP 8472G>C has been proven to be benign for five 
conditions by multiple researchers (43, 47).

Friendly user query–answer and knowledge graph 
interpretation via AIMedGraph
AIMedGraph has a friendly user interface to support making 
a query with single or multiple keywords, like gene, variant, 
drug, disease, clinical trial and literature. Simple searching 
for the shared variants of drug susceptibility and variant 
pathogenicity relations yields 2153 potential drug–disease 
candidates. For example, Breast carcinoma patients with vari-
ant PIK3CA p.Glu453Lys are sensitive to the FDA-approved 
therapy Alpelisib + Fulvestrant based on the result of a Phase 
III clinical trial SOLAR-1 (NCT02437318). This variant has 
been labeled to be pathogenic to megalencephaly cutis mar-
morata telangiectatica congenita. So Alpelisib + Fulvestrant 
may work as a candidate for megalencephaly cutis marmorata 
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telangiectatica congenita drug development. Another example 
of inferred relationship is that colorectal carcinoma patients 
with the NF1 p. Ile679fs variant are likely resistant to the 
drug Cetuximab and may not benefit from this drug based 
on a clinical study with 33 Chinese metastatic colorectal can-
cer patients (13). However, the drug selumetinib has been 
approved by the FDA in 2020 to treat neurofibroma patients 
for >2 years. This approval is based on a Phase II clinical trial 
and showed that patients with the NF1 p. Ile679fs variant are 
sensitive to selumetinib (NCT04924608). It is likely that CRC 
patients with NF1 p. Ile679fs are sensitive to selumetinib as
well.

It is well-known that NSCLC is the most popular and lethal 
tumor disease globally. Using NSCLC as a keyword to search 
answer in AIMedGraph, a knowledge graph of NSCLC is 
instantly presented just like it shown in Figure 4A. Around the 
disease NSCLC, 10 genes, 10 drugs and 10 clinical trials are 
linked with different specific relationships, including genomic 
alteration, causal mutation, indication and trial. If one is 
interested in NSCLC’s reasoning relationship, the inferred 
information would be displayed by clicking the button of 
AIReasoning. A new graph displayed in Figure 4B states that 
the new nine drugs are associated with NSCLC. Because the 
digital number represents the stronger relationships between 
two metrics, we selected Fruquintinib as an example with 
a value of 5.77, higher than the average reliability value of 
1.63. By clicking Fruquintinib, four new relations of clinical 
trials (NCT02590965, NCT02976116, NCT02691299 and 
NCT03684967) between NSCLC and Fruquintinib could be 
established, respectively, in Figure 4C. Thus, we can assume 
that Fruquintinib may be considered as an interval drug to 
treat NSCLC.

Discussion
With the aim to provide easy exploration and comprehen-
sive visualization of the treatment and disease information 
related to a patient’s specific genetic profile, the development 
of AIMedGraph is focused on the semantic integration and 
active visualization of multidimensional information from 
multiple resources. The databases integrated by AIMedGraph 
include omics databases, disease databases, drug databases 
and structured information extracted from unstructured lit-
erature studies and guidelines. Reasonably, the relationships 
among different omics data could be useful and helpful 
in precision medicine. Although the present integration of 
omics data is inadequate, it clearly indicates that the multi-
relational knowledge would be essential to understand pre-
cision medicine more accurately (2, 28, 32, 34, 48, 49). 
AIMedGraph seems to be tailored for different users who are 
interested in personalized management of disease.

Quality control of supporting evidence and accurate pre-
sentation of evidence in a structured way are other important 
factors. All the information retrieved from authorized pub-
lic databases must be brought into line with international 
standards, and the detailed items should be structured. The 
precision medicine is characterized by molecular pathological 
diagnosis and targeted therapy, underlining genome sequenc-
ing data of diseases, drug susceptibility, pharmacogenomics 
and clinical trials. Properly analyzing and accurately interpret-
ing are critical essential components, allowing personalized 
diagnosis and treatment according to the information from 

the individual patient’s unique genetic profile and specific 
environmental factors (50). Via quality control, individual 
variability in genes, environment and lifestyle factors, the 
standard of care in oncology and targeted drug therapies 
could be accurately interpreted in a structured manner. It 
is undoubtedly that overinterpretation or misinterpretation 
would all lead to the treatment of patients with ineffective but 
expensive therapies, negatively affecting not only patient lives 
but also the health care budget (1). Therefore, quality control 
is necessary for proper interpretation.

AIMedGraph is convenient for users to find the informa-
tion they wanted whether their initial clue is a gene, a variant, 
a drug or a disease that they could remember. The graph-
based infrastructure connecting different entities with labels 
on the relationships between these entities can enable the 
extraction of information along the graph path in two or three 
steps. For example, if a query is a gene name, users could 
get disease information in just one step from the gene–disease 
relationship, or two steps from the gene–variant ownership 
and variant–disease pathogenicity, or drug information in 
two steps from gene–variant ownership and variant–drug sus-
ceptibility or variant–drug pharmacogenomics effect; further 
clinical trial information could be obtained via drug–clinical 
trial relations. Its convenience might simplify patients’ educa-
tion via knowledge graph (Figure 4) because patients would 
not have to keep too many professional terms in mind. In the 
real world, an improvement in patients’ awareness of molec-
ular testing would play a positive role in medical care, clinical 
outcome and life quality (51–54).

Actually, there are a couple of databases or platforms 
involved in precision medicine, such as Pharmacogenomics 
(25, 38), DisGeNET (35), CIViC (21, 37), COSMIC (18), 
HGen (55), the Immuno-Oncology Biological Research (33), 
KGHC (22), MedGen (56), OncoTree (24) and OncoKB (23, 
38). Based on gene polymorphisms, Pharmacogenomics pro-
vides medication selection with different dosages to minimize 
potential drug toxicities in the treatment of relative diseases, 
including cancers, depression disorder and hypertension (25, 
38). DisGeNET is an interoperable resource focusing on 
gene–disease and variant–disease associations (35). OncoKB 
is an expert-guided precision oncology knowledge base that 
can interpret how somatic molecular alterations predict drug 
response for various cancer types (23, 38). In comparison to 
OncoKB, the CiViC knowledge database has a highly similar 
goal and extracts the information data from the identical data 
sources. But CIViC has the largest number of unique drugs 
and the largest number of unique gene-drug associations (37).

Compared with the above well-developed and commonly 
used databases or platforms, AIMedGraph has several merits. 
First, AIMedGraph adopted the knowledge graph technique 
that provides an effect to store and extract the multimodel 
relations between all the different omics and clinical fac-
tors. Through a relation graph, all information related to a 
query point could be displayed at the same time for com-
prehensive visualization. Information mining and inferred 
relationships from AIMedGraph could provide insight into 
putative mechanisms and boost clinical practice and research 
on drug development. In regarding this point, Pharma-
cogenomics, DisGeNET, CIViC and OncoKB have no such 
function. Second, not only the information on the asso-
ciations betweeen gene/variant and diseases are integrated 
into AIMedGraph,  similar to DisGeNET, but also clinical
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Figure 4. Knowledge graph presentation of NSCLC: (A) NSCLC relationships between genes, drugs and clinical trials, respectively; (B) inferred 
relationships of NSCLC; (C) reasoning between NSCLC and Fruquintinib.

actionable information, including the impact of variant on 
drug susceptibility, drug effect/dosage and adverse effect, and 
variant pathogenicity are integrated into AIMedGraph as 
well, together with supporting annotation and evidence level. 
Just like drug repurposing studies (49, 57–63), AIMedGraph 
could prioritize drug repurposing medications through our AI-
Reasoning assistive tool, particularly in antitumor drugs. In 
general, AIMedGraph integrates multidimensional, evidence-
based knowledge to interpret genetic variants for efficient 
clinical and research recommendations.
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